• 제목/요약/키워드: Engine block

검색결과 168건 처리시간 0.025초

엔진 블록과 냉각 팬의 간극에 따른 자동차 냉각 팬의 성능 특성 연구 (Performance Characteristics of Automobile Cooling Fan according to Gap between Engine Block and Cooling Fan)

  • 유병민;유기완;이강덕;이명한;홍성규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.92-97
    • /
    • 2009
  • The performance of cooling fan is affected by many peripheral parts, such as radiator, condenser, engine block and etc. Higher power has been requested in more confined automobile engine room. Thus, cooling performance becomes very important to remove the heat generated from the automobile engine more efficiently. In this paper, the performance of cooling fan including effects of engine block is investigated by using a fan tester based on the ASHRAE and the AMCA standards. A flow rate - gap distance curves and a flow rate - engine block constant curves are obtained from this study.

  • PDF

엔진블럭 가공라인 초기설계안 검증을 위한 시뮬레이션 사례연구 (A Case Study on the Verification of the Initial Layout of Engine Block Machining Line Using Simulation)

  • 문덕희;성재헌;조현일
    • 한국시뮬레이션학회논문지
    • /
    • 제12권3호
    • /
    • pp.41-53
    • /
    • 2003
  • The major components of an engine are engine block (or cylinder block), cylinder head, crank shaft, connecting rod and cam shaft. Thus the engine shop usually consists of six sub-lines, five machining lines and one assembly line. Flow line is the typical concept of layout for machining these parts, especially for engine block. In order to design an engine block machining line, several factors should be considered such as yearly production target, working hours, machines, tools, material handling equipments and so on. If the designers of manufacturing line were unaware of some factors those would be influenced on the system performance, it would make greater problems in the phase of mass production. Therefore the initial design of engine block machining line should be verified carefully. Simulation is the most powerful tool for analyzing the initial layout. This paper introduces the major factors those should be considered for designing the machining line and their effects on the system performance. 3D simulation models are developed with QUEST. Using the simulation model developed the initial layout is analyzed, and we suggest some ideas for improvement.

  • PDF

차량용 냉각 팬과 엔진 블럭의 간격 변화에 따른 성능 특성 연구 (Experimental Study on Performance Characteristics with Various Spacings between Automobile Cooling Fan and Engine Block)

  • 유병민;유기완;장재경;이강덕;홍성규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.143-149
    • /
    • 2009
  • Recently, according to the tendency to the more comfortable automobile, the improvement of performance of the cooling fan is required. The performance of cooling fan is affected by many peripheral parts, such as radiator, condenser, engine block and etc. Therefore, it is important to consider the effect of peripheral components on the fan performance in design and analysis stages. In this paper, the performance of automobile cooling fan is investigated experimentally by using the large capacity fan tester based on the ASHRAE and the AMCA standards. In particular, the various spacing between cooling fan and engine block are considered to obtain the effect of engine block. An empirical relation between the fan flow rate and the spacing was proposed.

  • PDF

소형 가솔린 기관의 실린더 블록에 대한 열적 거동 해석 (Analysis of the thermal behaviors of the cylinder block of a small gasoline engine)

  • 김병탁;박진무
    • 오토저널
    • /
    • 제15권3호
    • /
    • pp.55-67
    • /
    • 1993
  • In this study, the thermal behavior characteristics of the cylinder block of a small 3-cylinder, 4-stroke gasoline engine were analyzed, using the 3-dimensional finite element method. Before numerical analyses were conducted, the performance test and the heat transfer experiment of the engine were carried out in order to prepare the input data for the computations. Engine cycle simulation was performed to obtain the heat transfer coefficient and the temperature of the gas and the mean heat transfer coefficient of coolant. Temperature fields as a result of steady-state heat transfer were obtained and compared with experimental results measured at specific points of the inner and the outer walls of the cylinder block. The thermal stress and deformation characteristics resulting from the nonuniform temperature distributions of the block were investigated. The effects of the thermal behaviors of the cylinder block on the engine operations and the unfavourable aspects of excessive thermal loading were examined on the basis of the calculated results.

  • PDF

경계요소법에 의한 터보과급 가솔린기관 실린더블럭의 열전도 해석 (Analysis of heat conduction of cylinder block of turbocharged gasoline engine by boundary element method)

  • 김은태;최영돈;홍진관
    • 오토저널
    • /
    • 제11권2호
    • /
    • pp.41-54
    • /
    • 1989
  • In this study, steady state heat conduction problems of the cylinder block of turbocharged gasoline engine were solved by the boundary element method. Surface of the cylinder block was divided by the triangular cells with constant potential. Temperature distribution, effective heat transfer coefficient of the cylinder block were investigated with variation of equivalence ratio, engine speed and boost pressure. The results show that maximum temperature of cylinder block increase rapidly with increasing engine speed and boost pressure. The monolithic structure of cylinder block results in sever inhomogeneity of inner wall temperature at the high engine speed and boost pressure.

  • PDF

자동차용 가솔린 기관의 실린더 블록에 대한 열적 거동 해석 (Thermal Behavior Analysis on the Cylinder Block of an Automotive Gasoline Engine)

  • 손병진;김창헌
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.211-221
    • /
    • 1998
  • Thermal behavior on the cylinder block of a 4-cylinder, 4-stroke 2.0L SOHC gasoline engine was numerically and experimentally analyzed. The numerical calculation was performed using the finite element method. The cylinder block was modelled as a three dimensional finite element by considering its geometry. The physical domain was devided into hexahedron elements. 16 thermocouples were installed at points of 2mm inside from cylinder wall near top ring of piston in cylinder block, which points have suffered major thermal loads and suggested as proper measurement points for engine design by industrial engineers. Under full load and 9$0^{\circ}C$ coolant temperature condition, temperature behavior of cylinder block according to engine speed were analyzed. The results showed that temperature rose gradually to conform to a function of 2nd~4th order of engine speed at intake side, exhaust and siamese side, respectively. As engine load was changed from 100 to 50% by 25% step, temperature curve also conformed to 2nd~7th order function of engine speed. Temperature differences by load condition were similar among 100, 75% and 50%. Under full load and coolant temperature of 11$0^{\circ}C$, temperature behavior were also analyzed and the result also showed conformance to 2n d~7th order function of engine speed. Temperature curve was transferred in parallel upwards corresponding coolant temperature rise.

  • PDF

유한요소법을 이용한 디젤 엔진의 실린더블록-라이너-가스킷-에드 구조물에 대한 해석 (An Analysis of Diesel Engine Cylinder Block-Liner-Gasket-Head Compound by Finite Element Method)

  • 김주연;안상호
    • 한국자동차공학회논문집
    • /
    • 제5권3호
    • /
    • pp.147-158
    • /
    • 1997
  • This paper presents the analysis technique and procedure of main engine components-cylinder block, cylinder liners, gasket and cylinder head-using the finite element method, which aims to assess mainly the potential of lower oil consumption in a view point of engine design and to decide subsequently the accuracy of engine design which was done. The F.E. model of an engine section consisting of one whole cylinder and two adjacent half cylinders is used, whereby the crankcase is cut off at the block bottom deck. By means of a 3-dimensional F.E. model-including cylinder block, liners, gasket, cylinder head, bolts and valve seat rings as separate parts a linear analysis of deformations and stresses was performed for three different loading conditions;assembly, thermal and gas loads. For the analysis of thermal boundary conditions also the temperature field had to be evaluated in a subsequent step.

  • PDF

LPG 엔진 실린더 블록의 온도 분포 특성 해석을 위한 프로그램 개발 (Development of a Program for Analyzing the Characteristics of the Temperature Distribution of the LPG Engine Cylinder Block)

  • 손병진;유진석;김창헌
    • 대한기계학회논문집B
    • /
    • 제22권12호
    • /
    • pp.1746-1754
    • /
    • 1998
  • A computer program has been developed to predict the heat transfer characteristics and the temperature distribution in the cylinder block of a 4-cylinder, 4-stroke engine. The finete element method is employed to handle the complex geometries associated with the practical cylinder block. The hexahedron finite element is used for a mesh generation of three-dimensional domain. The present numerical procedure has been validated with the measured temperature at several locations of cylinder block. The heat transfer characteristics of engine cylinder block is systematically analyzed for various engine speeds and loading conditions.

밸런스 샤프트 적용에 따른 4기통 디젤 엔진 블록의 방사소음 특성 개선 해석 (The Analysis of NVH Characteristics of 4-Cylinerder Diesel Engine Block by Adapting Balancing Shaft)

  • 최천;서명원;김영진
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.129-137
    • /
    • 2000
  • The powertrain is an important factor for the interior and exterior noise behavior of the vehicle Thus, the noise vibration and harshness(NVH) behavior of an engine is becoming a major target of the powertrain development. This paper describes the analyses with the aim to reduce the vibration and noise of an advanced inline 4-cylinder diesel engine block by use of CAE methods. The characteristics of an engine block as a main excitation source of car interior noise is studied. Particularly, The effect of balance shaft to reduce the 2nd order engine excitation force is calculated by forced vibration and radiated noise analysis. The engine exitation forces are obtained under real operating conditions. It is shown that the reduction of vibration and noise level by adapting blancing shaft is well predicted and rediated noise is directly related to the surface velocity of engine block.

  • PDF

유연체 동역학적 해석을 이용한 엔진블록의 동응력 해석에 관한 연구 (A Study on the Dynamic Stress Analysis of an Engine Block using Flexible-body Dynamic Analysis)

  • 손창수;천호정;성활경;윤건식
    • 한국정밀공학회지
    • /
    • 제28권7호
    • /
    • pp.805-813
    • /
    • 2011
  • The dynamic stress of the diesel engine block is analyzed by using flexible-body dynamic analysis. Multiple loadings including the pressure load due to gas combustion, thermal load, and dynamic load are considered. Thermal load is assumed constant, however, pressure load and dynamic load are treated as time dependent. The present work is focused on the dynamic stress analysis, especially on finding critical points of the engine block. The analysis model includes four parts - engine block, generator, bed, and mounts. On the other hand, crank shaft, pistons, and main bearings are excluded from the model. However, their dynamic effects are applied by dynamic forces, obtained in the separate analysis. Dynamic stress is found by using flexible body dynamic analysis, and compared to the measured data.