• Title/Summary/Keyword: Engine block

Search Result 168, Processing Time 0.021 seconds

STATISTICAL ALGORITHMS FOR ENGINE KNOCK DETECTION

  • Stotsky, A.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.259-268
    • /
    • 2007
  • A knock detection circuit that is based on the signal of an accelerometer installed on the engine block of a spark ignition automotive engine has a band-pass filter with a certain frequency as a parameter to be calibrated. A new statistical method for the determination of the frequency which is the most suitable for the knock detection in real-time applications is proposed. The method uses both the cylinder pressure and block vibration signals and is divided into two steps. In both steps, a new recursive trigonometric interpolation method that calculates the frequency contents of the signals is applied. The new trigonometric interpolation method developed in this paper improves the performance of the Discrete Fourier Transformation, allowing a flexible choice of the size of the moving window. In the first step, the frequency contents of the cylinder pressure signal are calculated. The knock is detected in the cylinder of the engine cycle for which at least one value of the maximal amplitudes calculated via the trigonometric interpolation method exceeds a threshold value indicating a considerable amount of oscillations in the pressure signal; this cycle is selected as a knocking cycle. In the second step, the frequency analysis is performed on the block vibration signal for the cycles selected in the previous step. The knock detectability, which is an individual cylinder attribute at a certain frequency, is verified via a statistical hypothesis test for testing the equality of two mean values, i.e. mean values of the amplitudes for knocking and non-knocking cycles. Signal-to-noise ratio is associated in this paper with the value of t-statistic. The frequency with the largest signal-to-noise ratio (the value of t-statistic) is chosen for implementation in the engine knock detection circuit.

A study on spark-ignition engine knock measurements (스파크점화 기관의 노킹측정에 관한 연구)

  • 전광민;장원준
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.57-64
    • /
    • 1991
  • Spart-ignition engine knock is an abnormal combustion phenomenon originated from auto- ignition of a portion of or the entire end-gas during the later stage of combustion process. And engine knock is accompanied by a vibration of engine cylinder block and a high-pitched metallic noise. Engine knock is characterized in terms of its intensity, its occurrence crank angel and the percentage of engine knock cycles. To characterize engine knock, a precise measurements of cylinder pressure and a statistical analysis of cylinder pressure data are needed. The purpose of this study is to develope a technique to measure engine knock and its characteristics as a function of ignition timing change. A 4-cylinder spark-ignition engine and unleaded gasoline, whose octane number was 94, were used for experiments. To measure engine knock and to analyze engine knock characteristics, cylinder pressure data were sampled by a high speed data acquisition system which was developed in this study. Cylinder pressure data were sampled at each 0.1.deg. crank angle and the number of cycles continuously sampled was 80.

  • PDF

An Analysis of Launch Vehicle Development Strategy of SpaceX (SpaceX의 발사체 개발 전략 분석)

  • Lee, Keum-Oh
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.72-86
    • /
    • 2019
  • SpaceX is currently leading the global launch market with the successful launch and recovery of Falcon 9 v1.2 Block 5. SpaceX developed Merlin engine, a kerosene gas generator engine, and continuously upgraded the engine from Falcon 1 to Falcon Heavy to increase payload weight. SpaceX suffered a lot of failures early on, but with the help of NASA, it was possible to overcome many crises and develop vehicles. In addition, it successfully developed reusable vehicles, which drastically reduced operating costs. Subsequent launch vehicles in Korea also need to be developed with reference to SpaceX's development strategy.

Single-Phase Energy Metering Chip with Built-in Calibration Function

  • Lee, Youn-Sung;Seo, Jeongwook;Wee, Jungwook;Kang, Mingoo;Kim, Dong Ku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3103-3120
    • /
    • 2015
  • This paper presents a single-phase energy metering chip with built-in calibration function to measure electric power quantities. The entire chip consists of an analog front end, a filter block, a computation engine, a calibration engine, and an external interface block. The key design issues are how to reduce the implementation costs of the computation engine from repeatedly used arithmetic operations and how to simplify calibration procedure and reduce calibration time. The proposed energy metering chip simplifies the computation engine using time-division multiplexed arithmetic units. It also provides a simple and fast calibration scheme by using integrated digital calibration functionality. The chip is fabricated with 0.18-μm six-layer metal CMOS process and housed in a 32-pin quad-flat no-leads (QFN) package. It operates at a clock speed of 4096 kHz and consumes 9.84 mW in 3.3 V supply.

Dynamic modeling of engine/mount system via experimental modal analysis (실험적 모우드해석을 통한 엔진 마운트계의 동역학적 모델링)

  • 정경렬;조치영;이종원
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.39-45
    • /
    • 1988
  • The analytical model of an engine mount system with six degrees of freedom is identified using the modal parameters obtained from the experimental modal analysis. The structural parameters, mass moment of inertia of the engine block and stiffness of the rubber mounts, of the engine mount system are determined by using the condition that the estimated model parameters should satisfy the corresponding eigenvalue problem. The simulated modal parameters of the identified analytical model are in good agreement with the measured modal parameters.

  • PDF

A Real-Time Monitoring System Model for Reducing Manufacturing Lead-Time in Numerical Control Process - Focusing on the Marine Engine Block Process - (제조 리드타임 단축을 위한 NC 가공공정에서의 실시간 모니터링 시스템 모형 - 선박용 엔진블록 가공공정을 중심으로 -)

  • Kong, Myung-Dal
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.3
    • /
    • pp.11-19
    • /
    • 2018
  • This study suggests a model of production information system that can reduce manufacturing lead time and uniformize quality by using DNC S/W as a part of constructing production information management system in the industrial field of the existing marine engine block manufacturing companies. Under the effect of development of this system, the NC machine interface device can be installed in the control computer to obtain the quality information of the workpiece in real time so that the time to inspect the process quality and verify the product defect information can be reduced by more than 70%. In addition, the reliability of quality information has been improved and the external credibility has been improved. It took 30 minutes for operator to obtain, analyze and manage the quality information when the existing USB memory is used, but the communication between the NC controller computer and the NC controller in real time was completed to analyze the workpiece within 10 seconds.

Size and Shape Optimization of the Oil Pump for Fuel Consuming Reduction (엔진 연비 향상을 위한 오일펌프 사이즈/형상 최적화)

  • Jo, Sok-Hyun;Nam, Kyung-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2008
  • Generally block imbedded type oil pump is adopted to make a small engine. In this paper 1D/3D numerical simulations were conducted to reduce energy consumption of the block imbedded type oil pump. At each stage of engine development we have estimated the oil flow rate and pressure to optimize oil pump sizes by using the 1D system analysis and then accomplished 3D CFD(Computational Fluid Dynamics) simulations to optimize oil pump shapes including inlet/outlet port. As a result, the energy consumption of oil pump has been reduced to nearly 27% and the engine fuel consumption to $1{\sim}1.5%$.

Knock Control Using Cylinder Block Vibration Signals in a Spark-Ignition Engine (스파크 점화 기관의 실린더 블록 진동 신호를 이용한 노킹 제어)

  • 함윤영;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.186-194
    • /
    • 1997
  • The objective of this study is to develope knock control algorithms which can increase engine power without causing frequent knock occurrence. A four cylinder spark-ignition engine is used for the experiments to develop knock control algorithms which use block vibration signals. Knock occurrence is detected accurately by using knock threshold values which consider the difference of transmission path of each cylinder. Spark timing is controlled both simultaneously and individually. With the simultaneous control, torque gain is achieved by retarding the spark timing on knock occurrence in propotion to the knock intensity. The individual knock control algorithm results in higher torque gain than the simultaneous knock control algorithm. The knock occurrence frequency of the individual knock control algorithm is about twice the value of the simultaneous knock control algorithm results. Both control algorithms give similar torque gain of about 3% when they are optimized.

  • PDF

A Finite Element Analysis on Cylinder Liner Deformation of a Diesel Engine (디젤기관 실린더 라이너 변형에 대한 유한요소 해석)

  • Sangho Ahn
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • In this study the cylinder liner deformation which is one of the most influencing factors in a diesel engine oil consumption was performed by the finite element analysis on the basic designed structure consisting of the cylinder block, head and liners under the conditions of assembly, thermal and gas loads. Compared with a large number of other cylinder blocks showing remarkable harmonic orders of the liner distortion, results are excellent. Namely. the higher harmonic order amplitudes of the radial liner deformation amount to 1 ~ 2㎛ maximally. The main reason lies in the relatively large wall thickness of the liner which amounts to 8.2% of the bore diameter. Besides, a very stiff and symmetrical cylinder block design in combination with a bolt force introduction approximately 1.5mm below the block top deck have a further share on these results. Therefore excellent low oil consumption can be expected.

An Study on the Cylinder Wall Temperature and Performance of Gasoline Engine according to Engine Speed (가솔린기관의 회전수 변화에 따른 실린더 벽면온도 변화 및 기관성능에 관한 연구)

  • Kwon, K.R.;Oho, Y.O.;Kang, N.H.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 2002
  • The purpose of this study is preventing the stick, scuffing, scratch between piston and cylinder in advance, and obtaining data for duration test in actual engine operation. The temperature gradient in cylinder bore according to coolant temperature were measured using $1.5{\ell}$ class diesel engine. 20 thermocouples were installed 2mm deep inside from cylinder wall near top ring of piston in cylinder block, at which points major thermal loads exist. It is suggested as proper measurement points for engine design by industrial engineers. Under full load and $70^{\circ}$, $80^{\circ}C$ and $90^{\circ}C$ coolant temperature conditions, the temperature in cylinder block and engine oil increased gradually according to the increase of coolant temperature, the siamese side temperature of top dead center is $142^{\circ}C$ in peripheral distribution, that is about $20^{\circ}C$ higher than that at thrust, anti-thrust, and rear side temperature, respectively. The maximum pressure of combustion gas in $70^{\circ}C$ coolant temperature is about 2 bar lower than those of $80^{\circ}C$ and $90^{\circ}C$ coolant temperature. The engine torque in $80^{\circ}C$, $90^{\circ}C$ coolant temperature condition is about 4.9Nm higher than that of $70^{\circ}C$ coolant temperature.

  • PDF