• Title/Summary/Keyword: Engine Turbulence

Search Result 188, Processing Time 0.027 seconds

A Numerical Study of the Flow Field in the Combustion Chamber of the I.C Engine with Offset Valve (편심 밸브를 갖는 내연기관의 연소실 내부 유동장에 대한 수치적 연구)

  • 양희천;최영기;유홍선;고상근;허선무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1552-1565
    • /
    • 1992
  • Three dimensional numerical calculations were carried out for two different combustion chambers with the offset valve in order to investigate the swirl and the squish effects on the flow fields. The modified K-.epsilon. turbulence model considering the change of the density under the condition of the rapid compression and expansion of the pistion was used. During the compression process, it was found that the squish flow which controls the subsequent combustion process was produced due to the piston bowl in the bowl piston type combustion chambers but not for the flat piston type. The swirl velocity close to the solid body rotation was maintained in the flat piston type combustion chambers, but for the bowl piston type a resulting from the change of the solid body rotation was generated in the radial-circumferential plane. For the swirl ratio effect, as the swirl ratio increases, it was found that a large and strong vortex was generated in the radial-circumferential plane of bowl piston type combustion chambers because of the strong inward flows from the combustion chamber wall. These computational results were compared with the results of LDA measurement.

Numerical Study of Aerodynamics of Turbine Rotor with Leading Edge Modification Near Hub (허브 측 선단 수정에 따른 터빈 로터의 공력 특성에 대한 수치적 연구)

  • Kim, Dae Hyun;Lee, Won Suk;Chung, Jin Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.1007-1013
    • /
    • 2013
  • This study aims to analyze the aerodynamics when the geometry of the turbine rotor is modified. The turbine used in this study is a small engine used in the APU of a helicopter. It is difficult to improve the performance of small engines owing to the structural weakness of the blade tip. Therefore, the improvement of the hub geometry is investigated in many ways. The working fluid of a turbine is a high-temperature and high-pressure gas. The heat transfer rate of the turbine surface should be considered to avoid the destruction of blade owing to the heat load. The SST turbulence model gives an excellent prediction of the aerodynamic behavior and heat transfer characteristics when the numerical simulations are compared with the experimental results. In conclusion, the aerodynamic efficiency is improved when a bulbous design is applied to the leading edge near the hub. The endwall loss is reduced by 15%.

Experimental Study of Flow Characteristics with Swirl Number on Dump Combustor (모형 가스터빈 연소기에서 스월수에 따른 유동 특성에 관한 실험적 연구)

  • Park, Jae-Young;Han, Dong-Sik;Kim, Han-Seok;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.338-345
    • /
    • 2011
  • The swirl flow applied for high efficiency and reduction of emission such as NOx, CO in a gas turbine engine makes recirculation zone by shear layer in the combustion chamber. This recirculation zone influences a decreasing flame temperature and flame length by burned gas recirculation. Also it is able to suppress from instability in lean-premixed flame. In this study, it was found that the swirl flow field was characterized as function of swirl number using PIV measurement in dump combustor. As increasing swirl number, a change of flow field was presented and recirculation zone was shifted in the nozzle exit direction. Also turbulent intensity and turbulent length scale in combustor were decreased in combustion. It has shown reduction of eddies scale with swirl number increasing.

Experimental Study Of Supersonic Coanda Jet

  • Kim, Heuydong;Chaemin Im;Sunhoon, Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.33-33
    • /
    • 1999
  • The Coanda effect is the tendency for a fluid jet to atach itself to an adjacent surface and follow its contour without causing an appreciable flow separation. The jet is pulled onto the surface by the low pressure region which develops as entrainment pumps fluid from the region between the jet and the surface. Then the jet is held to the wall surface by the resulting radial pressure gradient which balance the inertial resistance of the jet to turning. The jet may attach to the surface and may be deflected through more than 180 dog, when the radius of the Coanda surface is sufficiently large compared to the height of the exhaust nozzle. However, if the radius of curvature is small, the jet turns through a smaller angle, or may not attach to the surface at all. In general, the limitations in size and weight of a device will limit the radius of the deflection surface. Thus much effort has been paid to improve the jet deflection in a variety of engineering fields. The Coanda effect has long been applied to improve aerodynamic characteristics, such as the drag/lift ratio of flight body, the engine exhaust plume thrust vectoring, and the aerofoil/wing circulation control. During the energy crisis of the seventies, the Coanda jet was applied to reduce vehicle drag and led to drag reductions of as much as about 30% for a trailer configuration. Recently a variety of industrial applications are exploiting another characteristics of the Coanda jets, mainly the enhanced turbulence levels and entrainment compared with conventional jet flows. Various industrial burners and combustors are based upon this principle. If the curvature of the Coanda surface is too great or the operating pressure too high, the jet flow will break away completely from the surface. This could have catastrophic consequences for a burner or combustor. Detailed understanding of the Coanda jet flow is essential to refine the design to maximize the enhanced entrainment in these applications.

  • PDF

CFD Analysis of Trap Effect of Groove in Lubricating Systems: Part I - Variation in Cross-Sectional Shape of Groove (그루브의 Trap 효과에 대한 CFD 해석: 제 1부 − 그루브 단면 형상의 변화)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.101-105
    • /
    • 2016
  • Trap effect of groove is evaluated in a lubricating system using computational fluid dynamics (CFD) analysis. The simulation is based on the standard k-ε turbulence model and the discrete phase model (DPM) using a commercial CFD code FLUENT. The simulation results are also capable of showing the particle trajectories in flow field. Computational domain is meshed using the GAMBIT pre-processor. The various grooves are applied in order to improve lubrication characteristics such as reduction of friction loss, increase in load carrying capacity, and trapping of the wear particles. Trap effect of groove is investigated with variations in cross-sectional shape and Reynolds number in this research. Various cross-sectional shapes of groove (rectangular, triangle, U shaped, trapezoid, elliptical shapes) are considered to evaluate the trap effect in simplified two-dimensional sliding bearing. The particles are assumed to steel, and defined a single particle injection condition in various positions. The “reflect” boundary condition for discrete phase is applied to the wall boundary, and the “escape” boundary condition to “pressure inlet” and “pressure outlet” conditions. The streamlines are compared with particles trajectories in the groove. From the results of numerical analysis in the study, it is found that the cross-sectional shapes favorable to the creation of vortex and small eddy current are effective in terms of particle trapping effect. Moreover, it is found that the Reynolds number has a strong influence on the pattern of vortex or small eddy current in the groove, and that the pattern of the vortex or small eddy current affects the trap effect of the groove.

Specific Impulse Gain for KSLV-II with Combination of Dual Bell Nozzle and Expansion-Deflection Nozzle (듀얼 벨 노즐과 E-D 노즐을 결합한 한국형발사체의 비추력 증가)

  • Moon, Taeseok;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.16-27
    • /
    • 2018
  • A basic numerical analysis was performed to confirm the possibility of combining a dual bell nozzle and an Expansion-Deflection(E-D) nozzle. The dual bell nozzle was designed based on the first-stage nozzle of the Korean Space Launch Vehicle that is being developed, and the E-D nozzle concept was applied to the dual bell nozzle. The inlet condition was analyzed by applying eight types of frozen flow analysis, and k-${\omega}$ SST was selected as the turbulence model. The number of optimal grids was obtained as 240,000 through the grid sensitivity analysis. As a result, it was confirmed that the transition altitude increased owing to over-expansion when the E-D nozzle concept was applied to the dual bell nozzle, and the specific impulse gain was obtained at high altitudes compared with the KSLV-II first-stage engine.

A Study on the Heat Flow Analysis of Infra-Red Signature Suppression System for Naval Ship (함정 적외선 신호저감 장치의 열 유동해석 연구)

  • Yoon, Seok-Tae;Cho, Yong-Jin;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.740-746
    • /
    • 2017
  • Infrared signatures emitted from hot exhaust gases generated by the internal combustion engine and generator of naval ships and from the metal surfaces of the funnel have become the targets of infrared homing missiles, which is the main cause of a reduced survivability of naval ships. The infrared signatures from the exhaust gas and the metal surface of a funnel can be reduced by installing an infrared signature suppression (IRSS) system on a ship. The IRSS system consists of three parts: an eductor that generates turbulent flow of the exhaust gas, a mixing tube that mixes the exhaust gas with ambient air, and a diffuser that forms an air film using the pressure difference between the inside and outside air. As a basic study to develop an IRSS system using domestic technology, this study analyzed the model test conditions of an IRSS system developed by an overseas engineering company and installed on a domestic naval ship, and a numerical heat-flow analysis was conducted based on the results of the aforementioned analysis. Numerical heat-flow analysis was performed using a commercial numerical-analysis application, and various turbulence models were considered. As a result, the temperature and velocity of the exhaust gas at the educator inlet and diffuser outlet and that of the metal surface of the diffuser were measured, and found to agree well with the measurement results of the model test.

A Study on the System of Aircraft Investigation (항공기(航空機) 사고조사제도(事故調査制度)에 관한 연구(硏究))

  • Kim, Doo-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.9
    • /
    • pp.85-143
    • /
    • 1997
  • The main purpose of the investigation of an accident caused by aircraft is to be prevented the sudden and casual accidents caused by wilful misconduct and fault from pilots, air traffic controllers, hijack, trouble of engine and machinery of aircraft, turbulence during the bad weather, collision between birds and aircraft, near miss flight by aircrafts etc. It is not the purpose of this activity to apportion blame or liability for offender of aircraft accidents. Accidents to aircraft, especially those involving the general public and their property, are a matter of great concern to the aviation community. The system of international regulation exists to improve safety and minimize, as far as possible, the risk of accidents but when they do occur there is a web of systems and procedures to investigate and respond to them. I would like to trace the general line of regulation from an international source in the Chicago Convention of 1944. Article 26 of the Convention lays down the basic principle for the investigation of the aircraft accident. Where there has been an accident to an aircraft of a contracting state which occurs in the territory of another contracting state and which involves death or serious injury or indicates serious technical defect in the aircraft or air navigation facilities, the state in which the accident occurs must institute an inquiry into the circumstances of the accident. That inquiry will be in accordance, in so far as its law permits, with the procedure which may be recommended from time to time by the International Civil Aviation Organization ICAO). There are very general provisions but they state two essential principles: first, in certain circumstances there must be an investigation, and second, who is to be responsible for undertaking that investigation. The latter is an important point to establish otherwise there could be at least two states claiming jurisdiction on the inquiry. The Chicago Convention also provides that the state where the aircraft is registered is to be given the opportunity to appoint observers to be present at the inquiry and the state holding the inquiry must communicate the report and findings in the matter to that other state. It is worth noting that the Chicago Convention (Article 25) also makes provision for assisting aircraft in distress. Each contracting state undertakes to provide such measures of assistance to aircraft in distress in its territory as it may find practicable and to permit (subject to control by its own authorities) the owner of the aircraft or authorities of the state in which the aircraft is registered, to provide such measures of assistance as may be necessitated by circumstances. Significantly, the undertaking can only be given by contracting state but the duty to provide assistance is not limited to aircraft registered in another contracting state, but presumably any aircraft in distress in the territory of the contracting state. Finally, the Convention envisages further regulations (normally to be produced under the auspices of ICAO). In this case the Convention provides that each contracting state, when undertaking a search for missing aircraft, will collaborate in co-ordinated measures which may be recommended from time to time pursuant to the Convention. Since 1944 further international regulations relating to safety and investigation of accidents have been made, both pursuant to Chicago Convention and, in particular, through the vehicle of the ICAO which has, for example, set up an accident and reporting system. By requiring the reporting of certain accidents and incidents it is building up an information service for the benefit of member states. However, Chicago Convention provides that each contracting state undertakes collaborate in securing the highest practicable degree of uniformity in regulations, standards, procedures and organization in relation to aircraft, personnel, airways and auxiliary services in all matters in which such uniformity will facilitate and improve air navigation. To this end, ICAO is to adopt and amend from time to time, as may be necessary, international standards and recommended practices and procedures dealing with, among other things, aircraft in distress and investigation of accidents. Standards and Recommended Practices for Aircraft Accident Injuries were first adopted by the ICAO Council on 11 April 1951 pursuant to Article 37 of the Chicago Convention on International Civil Aviation and were designated as Annex 13 to the Convention. The Standards Recommended Practices were based on Recommendations of the Accident Investigation Division at its first Session in February 1946 which were further developed at the Second Session of the Division in February 1947. The 2nd Edition (1966), 3rd Edition, (1973), 4th Edition (1976), 5th Edition (1979), 6th Edition (1981), 7th Edition (1988), 8th Edition (1992) of the Annex 13 (Aircraft Accident and Incident Investigation) of the Chicago Convention was amended eight times by the ICAO Council since 1966. Annex 13 sets out in detail the international standards and recommended practices to be adopted by contracting states in dealing with a serious accident to an aircraft of a contracting state occurring in the territory of another contracting state, known as the state of occurrence. It provides, principally, that the state in which the aircraft is registered is to be given the opportunity to appoint an accredited representative to be present at the inquiry conducted by the state in which the serious aircraft accident occurs. Article 26 of the Chicago Convention does not indicate what the accredited representative is to do but Annex 13 amplifies his rights and duties. In particular, the accredited representative participates in the inquiry by visiting the scene of the accident, examining the wreckage, questioning witnesses, having full access to all relevant evidence, receiving copies of all pertinent documents and making submissions in respect of the various elements of the inquiry. The main shortcomings of the present system for aircraft accident investigation are that some contracting sates are not applying Annex 13 within its express terms, although they are contracting states. Further, and much more important in practice, there are many countries which apply the letter of Annex 13 in such a way as to sterilise its spirit. This appears to be due to a number of causes often found in combination. Firstly, the requirements of the local law and of the local procedures are interpreted and applied so as preclude a more efficient investigation under Annex 13 in favour of a legalistic and sterile interpretation of its terms. Sometimes this results from a distrust of the motives of persons and bodies wishing to participate or from commercial or related to matters of liability and bodies. These may be political, commercial or related to matters of liability and insurance. Secondly, there is said to be a conscious desire to conduct the investigation in some contracting states in such a way as to absolve from any possibility of blame the authorities or nationals, whether manufacturers, operators or air traffic controllers, of the country in which the inquiry is held. The EEC has also had an input into accidents and investigations. In particular, a directive was issued in December 1980 encouraging the uniformity of standards within the EEC by means of joint co-operation of accident investigation. The sharing of and assisting with technical facilities and information was considered an important means of achieving these goals. It has since been proposed that a European accident investigation committee should be set up by the EEC (Council Directive 80/1266 of 1 December 1980). After I would like to introduce the summary of the legislation examples and system for aircraft accidents investigation of the United States, the United Kingdom, Canada, Germany, The Netherlands, Sweden, Swiss, New Zealand and Japan, and I am going to mention the present system, regulations and aviation act for the aircraft accident investigation in Korea. Furthermore I would like to point out the shortcomings of the present system and regulations and aviation act for the aircraft accident investigation and then I will suggest my personal opinion on the new and dramatic innovation on the system for aircraft accident investigation in Korea. I propose that it is necessary and desirable for us to make a new legislation or to revise the existing aviation act in order to establish the standing and independent Committee of Aircraft Accident Investigation under the Korean Government.

  • PDF