• Title/Summary/Keyword: Engine Torque Model

Search Result 98, Processing Time 0.022 seconds

A Study on the Reduction of Differential Vibration of FR Passenger Car (후륜구동 승용차의 디퍼렌셜 진동저감에 관한 연구)

  • 최은오
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.316-321
    • /
    • 1997
  • The purpose of this study is to reduce the vibration noise of differential gear by reducing torque fluctuation of drive pinion shaft which causes vibration noise of differential gear in rear wheel drive vehicles. For this we developed multi-degree of freedom analysis model in which mass moment of inertia and torsional spring combined, the validity of the simulation model was checked by the field test and we examined the influence of torsional vibration of driveline elements by performing forced vibration analysis of engine excitation torque. We studied the methods for reducing torsional vibration of driveline according to the design factor of propeller shaft and examined the effects reducing vibration differential gear by applying flexible coupling.

  • PDF

The Evaluation of Ship's Cruising Ability and Propulsive Performance in a Seaway (선박의 풍파중 항해능력 및 추진성능 평가에 관한 연구)

  • 김순갑
    • Journal of the Korean Institute of Navigation
    • /
    • v.14 no.2
    • /
    • pp.15-31
    • /
    • 1990
  • Recently, there is a tendency to design the large full ships with lower-powered engine as the means for energy saving in ship's navigation at seas. Such a lower-powered ship is anticipated to show the different propulsive performance in rough seas, because the fluctuation of main engine load of lower powered ship is relatively large as compared with higher-powered ship is relatively large as compared with higher-powered ship. The fluctuation of propeller load is nonlinear at racing condition in waves. It is due to the variation of inflow velocity into propeller, the propeller immersion and the characteristics of engine governor. In this paper, the theoretical calculation of the nominal speed loss and the numerical simulation for the nonlinear load fluctuation of a model ship in rough seas are carried out. From the results of calculation, the following are discussed. (1) The ratio of nominal speed loss to the speed in still water. (2) The manoeuvring ability of ship and the operational ability of main engine in a seaway. (3) A method of the evaluation for the fluctuation of propeller torque and revolution on the engine characteristics plane. (4) The effect of engine governor characteristics on the propeller load fluctuation.

  • PDF

Modeling of Hybride Electric Vehicle Drivetrain and Development of Simulation Program (하이브리드 전기차량 동력부의 모델링 및 성능평가 프로그램 제작)

  • 김도형;박영진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.122-129
    • /
    • 2000
  • This paper describes a hybrid dynamic system(HDS) modeling method and result for the drivertrain of a parallel hybrid electric vehicle(PHEV) which consists of a gasoline engine, an electric machine, and a continuous variable transmission (CVT) and proposes a drivetrain control system. The control system has an engine controller, a motor controller, a CVT controller and a supervisory controller for the coordination of all system. The controller keep the speed of engine wheel and the output torque within the optimal operation range based on the experimental data. We also developed a MATLAB/SIMULINK program for the performance simulation of PHEV drivetrain model and controllers and compared the simulation result with the experiment result in the recent literatures.

  • PDF

The Performance Analysis of Otto Cycle Engine by Thermodynamic Second Law (오토 사이클 기관의 열역학 제 2법칙적 성능 해석)

  • 김성수;노승탁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.94-102
    • /
    • 2001
  • The thermodynamic second law analysis, which means available energy or exergy analysis, for the indicated performance of Otto cycle engine has been carried out. Each operating process of the engine is simplified and modeled into the thermodynamic cycle. The calculation of the lost work and exergy through each process has been done with the thermodynamic relations and experimental data. The experimental data were measured from the test of single cylinder Otto cycle engine which operated at 2500 rpm, WOT(Wide Open Throttle) and MBT(Minimum advanced spark timing for Best Torque) condition with different fuels: gasoline, methanol and mixture of butane-methanol called M90. Experimental data such as cylinder pressure, air and fuel flow rate, exhaust gas temperature, inlet gas temperature and etc. were used for the analysis. The proposed model and procedure of the analysis are verified through the comparison of the work done in the study with experimental results. The calculated results show that the greatest lost work is generated during combustion process. And the lost work during expansion, exhaust, compression and induction process follows in order.

  • PDF

Study of Gas-turbine Cranking Model using the Coast Down Experimental Results (Coast Down 시험데이터를 이용한 가스터빈엔진 시동모델 연구)

  • Kim, Sun Je;Kim, Yeong Ryeon;Min, Seongki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.18-24
    • /
    • 2017
  • Appropriate selection of the starter is essential for successful starting of the gas-turbine engine. Thus, aerodynamic drag during starting phase should be analyzed to assess the feasibility of the starter. In this paper, aerodynamic drag is modeled based on the speed profile from the engine coast down test, and it is scaled with respect to the target engine by comparing the compressor load. Afterward, the govern equation of the starting phase is developed with the torque model of the starter, and the design scheme to select the feasible starter will be finally suggested. The proposed model of starting phase will be useful to perform a preliminary design of the starting system of the gas-turbine engine.

A Study of Torque Vectoring Application in Electric Vehicle for Driving Stability Performance Evaluation (토크 벡터링을 적용한 전기차의 선회 성능 평가에 관한 연구)

  • Yi, JongHyun;Lee, Kyungha;Kim, Ilho;Jeong, Deok-Woo;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.250-256
    • /
    • 2014
  • EV(Electric Vehicle) has many benefits such as prevention of global warming and so on. But due to driving source changing from combustion engine to battery and e-motor, new R&D difficulties have arisen which changing of desired vehicle performance and multidisciplinary design constraints by means of strong coupled multi-physics domain problems. Additionally, dynamics performances of EV becomes more important due to increasing customer's demands and expectations for EV in compare with internal combustion engine vehicle. In this paper suggests model based development platform of EV through integrated simulation environment for improving analyse & design accuracy in order to solve multi-physics problem. This simulation environment is integrated by three following specialized simulation tools IPG CarMaker, AVL Cruise, DYMOLA that adapted to each purpose. Furthermore, control algorithm of TV(Torque Vectoring) system is developed using independent driven e-motor at rear wheels for improving handling performance of EV. TV control algorithm and its improved vehicle performances are evaluated by numerical simulation from standard test methods.

Development of CODOG Propulsion System Simulator (CODOG 함정 추진체계 시뮬레이터 개발)

  • Jang, Jae-hee;Shin, Seung-woo;Kim, Min-gon;Oh, Jin-seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1808-1817
    • /
    • 2017
  • Duties required for naval ship such as anti-submarine, anti-ship, and supply, etc are diversified, so the ECS (Enfineering Control System) is required for executing the mission effectively. The ECS monitors and controls the propulsion system in order that naval ship can perform the mission. As the in-country development of ECS is progressed, a test system for ECS is needed, and a naval ship propulsion system simulator based on CODOG was developed on this study. The naval ship propulsion system simulator based on CODOG which is divided into gas turbine model, diesel engine model, reduction gear model and controllable pitch propeller model, simulates to feedback of control commands of ECS. As a result of the experiment, it is able to confirm speed, torque and power, etc. of the gas turbine, diesel engine and shaft according to ECS propulsion mode.

A Study on the Vehicle Dynamic Characteristics Considering Powertrain and Brake Systems (동력전달계와 제동계를 고려한 차량의 운동 특성에 관한 연구)

  • Bae, Sang-Woo;Lee, Chi-Bum;Yun, Jung-Rak;Lee, Jang-Moo;Tak, Tae-Oh
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.684-689
    • /
    • 2000
  • In this paper, the equations of motion about vehicle, powertrain and brake system were derived. The vehicle has eight degrees of freedom with nonlinear tire model and the powertrain has two degrees of freedom containing engine, torque converter and four speed automatic transmission. The brake system has two states about front and rear brake line pressures. The transient tire model with first order time lag is also subjoined for low speed or stop-and-go simulation. The modeling was derived considering two points - the fidelity and the simplicity. The simulation using this model is similar with real vehicle dynamic behavior and the model is made as simple as possible far fast simulation. It is validated that the derived vehicle model can be applicable to the real time simulation.

  • PDF

The study of sound source synthesis IC to realize the virtual engine sound of a car powered by electricity without an engine (엔진 없이 전기로 구동되는 자동차의 가상 엔진 음 구현을 위한 음원합성 IC에 관한 연구)

  • Koo, Jae-Eul;Hong, Jae-Gyu;Song, Young-Woog;Lee, Gi-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.571-577
    • /
    • 2021
  • This study is a study on System On Chip (SOC) that implements virtual engine sound in electric vehicles without engines, and realizes vivid engine sound by combining Adaptive Difference PCM (ADPCM) method and frequency modulation method for satisfaction of driver's needs and safety of pedestrians. In addition, by proposing an electronic sound synthesis algorithm applying Musical Instrument Didital Interface (MIDI), an engine sound synthesis method and a constitutive model of an engine sound generation system are presented. In order to satisfy both drivers and pedestrians, this study uses Controller Area Network (CAN) communication to receive information such as Revolution Per Minute (RPM), vehicle speed, accelerator pedal depressed amount, torque, etc., transmitted according to the driver's driving habits, and then modulates the frequency according to the appropriate preset parameters We implemented an interaction algorithm that accurately reflects the intention of the system and driver by using interpolation for the system, ADPCM algorithm for reducing the amount of information, and MIDI format information for making engine sound easier.

Response characteristics of a CVT vehicle (무단변속기(CVT) 차량의 응답특성)

  • Kim, K. W.;Kwan, H. B.;Kim, H. S.;Eun, T.;Park, C. I
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.99-109
    • /
    • 1992
  • The response characteristics of a CVT vehicle is investigated numerically by using a Bondgraph model. Simulation result show the continuous behavior of the engine and the speed ratio for the CVT vehicle compared to the discrete behavior of the automatic transmission. Also, the optimal operation of the CVT which is derived from the speed ratio-torque-axial force equation from the previous works. It is found that the speed ratio of CVT has to be controlled corresponding to the optimal CVT ratio that makes the engine run on the optimal operating line.

  • PDF