• Title/Summary/Keyword: Engine Test Equipment

Search Result 124, Processing Time 0.021 seconds

Development and Performance Analysis of Self-Propelled Crawler and Gathering Type Potato Harvester (크롤러 타입 자주식 수집형 감자 수확기 개발 및 성능분석)

  • Won-Kyung Kim;Sang Hee Lee;Deok Gyu Choi;Seok Ho Park;Youn Koo Kang;Seok Pyo Moon;Chang Uk Cheon;Young Joo Kim;Sung Hyuk Jang
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.23-29
    • /
    • 2024
  • Potatoes are one of the world's four major crops, and domestic consumption is currently increasing in Korea. However, the mechanization rate of potatoes is very low, and especially, harvesting is the most labor-intensive task in potato production. In Korea, potato-collecting work depends on manpower, so it is necessary to develop a gathering-type harvester that can be used for processes from digging to harvesting. Therefore, in this study, a self-propelled-type potato harvester was developed, and its performance was analyzed to mechanize harvesting. The potato harvester was developed to have a crawler-type driving part with a 60 hp diesel engine and consisted of a digging part that digs potatoes from the ground, a vertical transporting part that transfers the dug potatoes to the height of the collection bag, a separating part that separates debris, such as stones and soil, and a collecting part that loads the collection box. A field test of the potato harvester was conducted, and performance was evaluated by the damage, loss, and debris mixing proportions, which were 2.5%, 2.8%, and 2.6%, respectively. The working capacity was 1.2 h/10 a. The economic analysis results showed that the cost of harvesting work could be reduced by 12.7% compared to manual harvesting.

Experimental Study on Dynamic Behavior of a Titanium Specimen Using the Thermal-Acoustic Fatigue Apparatus (열음향 피로 시험 장치를 이용한 티타늄 시편의 동적 거동에 관한 실험적 연구)

  • Go, Eun-Su;Kim, Mun-Guk;Moon, Young-Sun;Kim, In-Gul;Park, Jae-Sang;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.127-134
    • /
    • 2020
  • High supersonic aircraft are exposed to high temperature environments by aerodynamic heating during supersonic flight. Thermal protection system structures such as double-panel structures are used on the skin of the fuselage and wings to prevent the transfer of high heat into the interior of an aircraft. The thin-walled double-panel skin can be exposed to acoustic loads by supersonic aircraft's high power engine noise and jet flow noise, which can cause sonic fatigue damage. Therefore, it is necessary to examine the behavior of supersonic aircraft skin structure under thermal-acoustic load and to predict fatigue life. In this paper, we designed and fabricated thermal-acoustic test equipment to simulate thermal-acoustic load. Thermal-acoustic testing of the titanium specimen under thermal-acoustic load was performed. The analytical model was verified by comparing the thermal-acoustic test results with the finite element analysis results.

Analysis of Traction Performance for Agricultural Tractor According to Soil Condition (토양 조건에 따른 농업용 트랙터의 견인 성능 분석)

  • Lee, Nam Gyu;Kim, Yong Joo;Baek, Seung Min;Moon, Seok Pyo;Park, Seong Un;Choi, Young Soo;Choi, Chang Hyun
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.133-140
    • /
    • 2020
  • Traction performance of a tractor varies depending on soil conditions. Sinkage and slip of the driving wheel for tractor frequently occur in a reclaimed land. The objective of this study was to develop a tractor suitable for a reclaimed land. Traction performance was evaluated according to soil conditions of reclaimed land and paddy field. Field experiments were conducted at two test sites (Fields A: paddy field; and Field B: reclaimed land). The tractor load measurement system was composed of an axle rotation speed sensor, a torque meter, a six-component load cell, GPS, and a DAQ (Data Acquisition System). Soil properties including soil texture, water content, cone index, and electrical conductivity (EC) were measured. Referring to previous researches, the tractor traveling speed was set to B3 (7.05 km/h), which was frequently used in ridge plow tillage. Soil moisture contents were 33.2% and 48.6% in fields A and B, respectively. Cone index was 2.1 times higher in field A than in field B. When working in the reclaimed land, slip ratios were about 10.5% and 33.1% for fields A and B, respectively. The engine load was used almost 100% of all tractors under the two field conditions. Traction powers were 31.9 kW and 24.2 kW for fields A and B, respectively. Tractive efficiencies were 83.3% and 54.4% for fields A and B, respectively. As soil moisture increased by 16.4%, the tractive efficiency was lowered by about 28.9%. Traction performance of tractor was significantly different according to soil conditions of fields A and B. Therefore, it is necessary to improve the traction performance of tractor for smooth operations in all soil conditions including a reclaimed land by reflecting data of this study.

A Fundamental Study on Nano-cement by Chemical Synthesis (화학적 방법에 의한 나노시멘트 개발에 관한 기초 연구)

  • Jo, Byung-Wan;Kang, Seok-Won;Yoon, Kwang-Won;Choi, Ji-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.713-718
    • /
    • 2009
  • Advanced industries-IT, BT, NT and ET are rapidly developing in 21 century. And the cement industry is becoming the principal factor in air pollution because of the creation of $CO_2$ during manufacturing. Also, the cement industry will be faced with a crisis due to the exhaustion of natural resources. In this study, nano cement by Bottom-up method of a chemical synthesis was developed. The generation of $CO_2$ during the plasticization process of cement manufacturing was avoided. The purpose was to produce building materials that have both high strength and durability as the high value-added growth engine industry of the 21 century. The nano cement was developed using hydrothermal synthesis. This is a method of mixing after ripening, by manufacturing the high density gel and low gel, which does not require special test equipment or pressure conditions to produce. Particle size, SEM, EDX, and porosity tests were conducted. This study investigated the compressive strength of concrete with various compositions. Specimens were tested for compressive strength at 3, 7, 14 and 28 days. The medium-sized (50% by weight) cement particles created by chemical synthesis were less than 168 nm. The compressive strength of the mortar prepared using this cement was 53.9 MPa. But it was judged that succeeding study will be necessary for development of nano building materials with high ability and economical analysis.