• Title/Summary/Keyword: Engine System Development

Search Result 1,346, Processing Time 0.043 seconds

Development of Real-Time Simulator for a Heavy Duty Diesel Engine (건설기계 디젤엔진용 실시간 시뮬레이터 개발)

  • Noh, Young Chang;Park, Kyung Min;Oh, Byoung Gul;Ko, Min Seok;Kim, Nag In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.203-209
    • /
    • 2015
  • Recently, the portion of electronic control in an engine system has been increasing with the aim of meeting the requirements of emissions and fuel efficiency of the engine system in the construction machinery industry. Correspondingly, the complexity of the engine management system (EMS) has increased. This study developed an engine HiLS system for reducing the cost and time required for function development for the EMS. The engine model for HiLS is composed of air, fuel, torque, and dynamometer models. Further, the mean value method is applied to the developed HiLS engine model. This model is validated by its application to a heavy-duty diesel engine equipped with an exhaust gas recirculation system and a turbocharger. Test results demonstrate that the model has accuracy greater than 90 and also verify the feasibility of the virtual calibration process.

Introduction of Engine System Development Document Management System(ESDD) 3.0 for KSLV-II (엔진시스템개발 문서관리시스템(ESDD) 3.0 소개)

  • Choi, Young-In;Jeong, Eunhwan;Kim, Jinhan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1169-1170
    • /
    • 2017
  • Engine System Development Document management system(ESDD) 2.0 has already been operated for systematic engine systems development of KSLV-II. In addition, ESDD 3.0 is under development to manage the documents of before and after engine tests. In this paper, the concept and direction of ESDD 3.0 will be briefly described.

  • PDF

A Case Study on Collaborative Activities for Newly Installation of an Engine in a Helicopter (헬기 엔진의 신규장착을 위한 지원 사례 연구)

  • Ahn, Ieeki;Kim, Jae-Hwan;Sung, Oksuk
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.2
    • /
    • pp.27-32
    • /
    • 2014
  • From the flight safety and the performance point of views, a new engine installation impacts an helicopter development or upgrade program significantly. More than a close relationship between an aircraft manufacturer and an engine manufacturer is necessary for the best integration work from the program initiation phase. In this paper, technical cooperation between aircraft and engine companies, and technical supports by the engine manufacturer for the T700/701K engine during the Surion development program are summarized. The applications of official technical program documents, US Mil-spec, France airworthiness regulations as the standard of the engine installation work, and engineering activities at each phase such as contract, design and manufacturing, flight clearance, ground and flight tests are described. This paper would be a cornerstone for the future domestic helicopter development program.

The Development of Software for Vehicle Engine Mounting System Analysis (차량 엔진마운팅 시스템 해석 소프트웨어 개발)

  • Park, Un-Hwan;Song, Yoon-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.348-354
    • /
    • 2010
  • In the beginning of vehicle development, it is difficult to define the concept of engine mounting system. With only the property of vehicle, we have to find the direction of engine mounting system. And it is important to find common mounts for several engine variation in order to reduce the cost and manage mounts efficiently. This paper introduces the software which has developed for engine mounting system analysis. And its function and usefulness are explained in paper. The examples have correlated between the analysis model and real model to raise the accuracy during development of engine mounting system are shown in paper.

Study on the Emergency Protection System of Liquid Rocket Engine (액체로켓엔진 비상보호시스템 연구)

  • Kim, Seung-Han;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.97-103
    • /
    • 2011
  • This paper describes the main considerations for the development of engine emergency protection system and applications to preliminary engine development tests. Emergency protection system performed its role without failure to shutdown test very quickly for the prevention of development of malfunctioning of test articles, which protected test articles and test facility in all abnormal situation occurred during preliminary engine development test program. This results will be used for the development of engine emergency protection system.

  • PDF

Optimal Mounting System for Active Engine Mount (능동 최적 마운팅 시스템 개발)

  • Kim, Jeong-Hoon;Kim, Jae-San;Kim, Jang-Ho;Lee, Dong-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.276-277
    • /
    • 2008
  • Recently active engine mounting system is developed for improvement of vehicle NVH performance which follow the development of high efficient powertrain and lightweight vehicle body. The most important part in the development of active engine mounting system is implementation of optimal engine mounting system to apply active engine mount. In this paper engine mounting systems including active engine mount are considered and their performance is predicted using engine mounting system analysis tool. Then optimal mounting system for active engine mount is proposed.

  • PDF

Development of Engine Simulator for The Optimal Control System Implementation of Gas Turbine Engine (가스터빈엔진 최적 제어시스템 구현을 위한 엔진 시뮬레이터 개발)

  • Lim, H.S.;Cha, Y.B.;Lee, B.S.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2082-2085
    • /
    • 2002
  • This paper describes the development of a gas turbine engine simulator in detail. The simulator presented in this paper has a mathematical engine model based on a target gas turbine engine performance data and is developed for generating a gas turbine engine sensor signals between the hardwares and softwares of a gas turbine engine control system using Data Acquisition systems(DAS) and 1553B communication, a aeronautic standard communication specification. In addition, this paper proves the excellent performance of this simulator by showing the results of a gas turbine engine field test and simulation.

  • PDF

Establishing HP/LP-EGR System and Founding Operating Strategy of Low Temperature Combustion Engine to Improve Fuel Consumption (연료소비율 개선을 위한 고압/저압 배기재순환 시스템 구축 및 저온연소 엔진의 운전전략 수립)

  • Shin, Seunghyup;Han, Youngdeok;Shim, Euijoon;Kim, Duksang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.81-89
    • /
    • 2014
  • This study researched on the effect of HP/LP-EGR system to improve fuel consumption of Low Temperature Combustion Engine. Firstly, low temperature combustion engine with HP/LP-EGR system was established using 6.0L wastegate turbocharger HDDI engine. And suppliable EGR rate of the engine was proven to be enough to realize stable low temperature combustion. Then, optimum operating strategy was founded to develop fuel consumption of the engine. Control parameters were HP/LP-EGR valve and IPCV(Intake Pressure Control Valve) duty. Experiments method was that characteristics of the engine were measured and analyzed according to HP/LP-EGR strategies while EGR rate was fixed. Operating range for the strategy were divided into three parts, low load for low temperature combustion, high load for conventional diesel combustion, and transient condition. Finally, with the above strategy of this study, BSFC of the engine was improved about 2% compared to the base engine, and emission level, NOx and PM, met Tier4Final emission regulation.

A Study of Low Temperature Combustion System Optimization for Heavy Duty Diesel Engine (대형디젤엔진의 저온연소 시스템 최적화에 관한 연구)

  • Han, Youngdeok;Shim, Euijoon;Shin, Seunghyup;Kim, Duksang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.178-184
    • /
    • 2015
  • According to the regulation on the environment and fuel efficiency is becoming strict, many experiments are conducted to improve efficiency and emission in internal combustion engines. LTC (Low temperature combustion) technology is a promised solution for low emissions but there are a few barriers for the commercial engine. This paper includes optimization that applies LTC method to heavy duty diesel engine. Adequate LTC was applied to low and middle load as adaptability in heavy duty diesel engine, and optimization focused on reduction of fuel consumption was proceeded at high load. Through this research, strategy for practical use of LTC was selected, and fuel consumption has improved on the condition that satisfies the emission regulation at systematic viewpoint.

Investigation of Combustion Strategy for Commercialization of Low Temperature Diesel Combustion Engine (저온연소엔진 실용화를 위한 연소전략에 대한 연구)

  • Shim, Euijoon;Han, Youngdeok;Shin, Seunghyup;Kim, Duksang;Kwon, Sangil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.120-127
    • /
    • 2014
  • Robustness and controllability are the key factors in internal combustion engine commercialization. This study focuses on the combustion strategy to commercialize the low temperature diesel combustion technology. Various LTC combustion methods such as PPCI, MK and highly diluted mixing controlled LTC were conducted on 6.0L heavy duty diesel engine. To find the best feasible LTC strategy, emission level, fuel consumption and combustion safety during the combustion mode change were considered. Experiments were carried out under various engine operating conditions; engine speed & load, EGR level, injection timing. Finally, this study suggests realizable LTC combustion strategy; moderate EGR level and slight early injection are possible to considerably lower PM, NOx emission and expand LTC operating range up to 50% load without CO and HC emission.