• Title/Summary/Keyword: Engine Intake

Search Result 758, Processing Time 0.021 seconds

Analysis of Flow Characteristics in the Intake System of 6-Cylinder MPI CNG Engine

  • Ha, Seung-Hyun;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.215-222
    • /
    • 2002
  • It has been well acknowledged that intake system plays great role in the performance of reciprocating engine. Well-designed intake system is expected to not only increase engine efficiency but also decrease engine emission, which is one of the most urgent issues in the automotive society. Thorough understanding of the flow in intake system helps great to design adequate intake system. Even though both experimental and numerical methods are used to study intake flow, numerical analysis is more widely used due to its merits in time and economy. Intake system of In-line 6-Cylinder CNG engine was chosen for the analysis ICEM CFD HEXA was used to create 3-D structured grid and FIRE code was used for the flow analysis in the intake system. Due to the complexity of the geometry standard ${\kappa}-{\varepsilon}$ turbulence model was applied. Numerical analysis was performed for various inlet and outlet boundary conditions under both steady and transient flow. Inlet mass flow rate and outlet pressure variation were changing parameters with respect to engine speed. Flow parameters, such as velocity, pressure and flow distribution, were evaluated to provide adequate data of this intake system.

  • PDF

A Study on the Steady Intake Flow Characteristics of the Intake 3-Valve Cylinder Head (흡기3밸브 실린더 헤드의 흡입 정상유동 특성에 관한 연구)

  • Chung, Jae-Woo;Lee, Ki-Hyung;Kim, Woo-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.880-885
    • /
    • 2000
  • Flow patterns and steady flow characteristics of an intake 3valve cylinder head are not obviously declared. Thus, in the study, the characteristics and limitation of intake flow coefficient which applied to multi intake valve engine are introduced. The flow coefficient and tumble characteristics are investigated by means of the steady flow test and flow visualization method. As the results, it is found that the intake flow rate is dominated by effective valve open area. In addition, this paper shows that the mass flow rate of intake 3valve engine is greater than that of intake 2valve engine and tumble flow of intake 3valve engine is superior to that of intake 2valve engine.

An Experimental Study on the Effects of Intake Manifold Shapes on the Torque Characteristics in a 3-Cylinder LPG Engine (흡기다기관 형상변화가 3기통 LPG엔진의 토크 특성에 끼치는 영향에 관한 실험적 연구)

  • 이지근;이한풍;강신재;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.175-182
    • /
    • 1997
  • The purpose of this study is to investigate the effects of intake manifold shapes to improve the engine performance in a 3-cylinder LPG engine with a closed loop fuel supply system. To know the flow resistance of intake manifolds with shape, the intake negative pressure of each runner in intake manifolds were measured by using the digital pressure meter at each driving condition. And, the engine torque and power have been measured with an engine dynamometer while adjusting the optimal fuel consumption ratio with a solenoid driver. As 속 results form this experiment, the torque characteris- tics were more improved with the plenum chamber(B type intake manifold) than with the banana type(A type intake manifold). The torque characteristics were improved at mid-engine speed(rpm) range as the inner diameter of the intake manifold became smaller. And also the optimum volume among the examined plenum chamber volume was 0.74 times(590cc) the displacement of the test engine.

  • PDF

A Study on the Multi-Tuning for Intake Manifold Using Engine Simulation (흡기관 복합공진을 위한 기관의 시뮬레이션 연구)

  • 이응석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3315-3325
    • /
    • 1994
  • To study the variation of charging efficiency in the engine intake, the method to change the natural frequency of intake system using the intake control valve was studied and it has been used in actual engine to increase the intake air. In this paper, the method of characteristics was used to analyze the non-steady state and compared with the experimental data of the 6-cylinder diesel engine showing the effectiveness of the method theoretically.

A Study on Analysis of Intake Flow in a 5-valves Gasoline Engine by using a Two Color PIV System (이색 PIV를 이용한 5밸브 가솔린 엔진의 흡입 유동 해석)

  • Woo, Young-Wan;Park, Sang-Chan;Lee, Ki-Hyung;Lee, Chang-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.933-938
    • /
    • 2001
  • A 5-valve(intake 3-valve) engine has been developed to increase engine performance. These vehicles have a high power caused by the decrease of inertia mass of an intake valve and the increase of intake effective area. In this study, velocity profiles at near intake valves were inspected by using a two-color PIV and laser sheet method with tumble control valve(TCV). In addition, steady flow tests were performed to quantify tumble ratio on flow-fields generated with a TCV. These experimental results show that the tendency of the tunble ratio in intake 3-valve engine is different from the one in intake 2-valve engine. From this results, the intake flow characteristics around intake valves were made clear.

  • PDF

1D Computer Simulation of Diesel Engine Intake Port Swirl Ratios Considering the Fuel Injection Timing Range (디젤 엔진 연료 분사 타이밍 구간에서의 흡기 포트 스월비 1D 컴퓨터 시뮬레이션)

  • Oh, Dae San;Lee, Choong Hoon
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.81-87
    • /
    • 2021
  • This study was performed to calculate the swirl ratio of a diesel engine intake port by a 1D computer simulation under actual engine operating conditions. The swirl ratio of the intake port was simulated according to the change of the engine speed during the operation of the motoring without fuel injection. The swirl ratio of the intake port was simulated according to changes in the crank angle during the four-cycle operation of intake, compression, expansion and exhaust. The swirl ratio represented by the three regions of the piston, center and squish was simulated. Among the three regions, the piston-region swirl ratio is important for effective air-fuel mixing in the engine cylinder. In particular, it was confirmed during the simulation that the piston swirl ratio before and after the compression top dead center (TDC) point when fuel is injected in the DI diesel engine can have a significant effect on the mixing of air and fuel. It was desirable to set the average piston swirl ratio over a crank angle section before and after compression TDC as the representative swirl ratio of the cylinder head intake port according to the change of the engine speed.

The Effect of Intake Air Temperature on Knock Characteristics in a Spark-Ignition Engine (흡입 공기 온도변화에 따른 스파크 점화기관의 노킹 특성 변화)

  • 정일영;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.22-31
    • /
    • 1993
  • Spark-ignition engine knock is affected by engine operating conditions such as engine speed, spark timing and intake air temperature. In this study the effect of intake air temperature on knock characteristics was studied experimentally using a 4-cylinder carburetor spark-ignition engine. The cylinder pressure data at 2000rpm were taken for intake air temperature range of $30^{\circ}C$ to $80^{\circ}C$ with $10^{\circ}C$ interval. And 80 consecutive cycles were taken at each experimental condition. As the same spark timing, as the intake air temperature increased by $50^{\circ}C$, the mean knock intensity increased about 20kPa. This effect corresponds to that of spark timing advance of 3 crank angle degrees.

  • PDF

A Study on the Combustion Characteristics of Diesel Engine by the Change of the Intake Air Composition (흡기조성 변화에 따른 디젤 기관의 연소 특성 변화)

  • 김세원;임재문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.91-96
    • /
    • 1994
  • Intake gases other than air, which is composed of oxygen, nitrogen, carbon dioxide, and argon, are used to study their effects on the performance of the diesel engine experimentally. The engine is operated at constant speed and fixed fuel injection timing, and cylinder pressure and heat release rate are measured at various intake gas compositions. The results show that increase of oxygen concentration improves the performance of the engine generally. The adverse effect is observed when the oxygen concentration is increased over the critical oxygen concentration of this test, mainly because of the over-shortened ignition delay. Increase of carbon dioxide concentration degardes the performance of the engine, mainly due to the lower specific heat ratio of carbon dioxide. Adding argon gas to the intake gas improves the overall performance. Finally, it is found that two most influencing factors affecting the performance of the diesel engine in this study are ignition delay and speific heat ratio of the intake gas.

  • PDF

Effects of Intake Gas Compositions on the Performance of Diesel Engine (흡기 조성 변화가 디젤기관의 성능에 미치는 영향)

  • Kim, S.W.;Lee, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.49-58
    • /
    • 1994
  • A study on the performance of a Diesel engine with various intake gas compositions other than that of air are performed experimentally. In this study, the concentrations of each of oxygen, nitorgen, carbon dioxide, and argon are changed and their effects on the performance of the engine are investigated parametrically. The experiments are performed at constant engine speed condition, and main measured parameters are cylinder pressure, intake gas compositions, fuel consumption rate. Increase of oxygen concentration up to 24% improved the performance of the engine generally. The adverse effect was observed when the oxygen concentration was increased over 24%. Increase of carbon dioxide concentration degraded the performance of the engine, mainly due to the lower specific heat ratio of carbon dioxide. Adding argon gas to the intake gas improved the overall performance. Finally, it is found that two most influencing factors affecting the performance of the Diesel engine in this study of intake gas composition variation are ignition delay and specific heat ratio of the intake gas.

  • PDF

Prediction of the Radiated Noise from the Vehicle Intake System (자동차 흡기계의 방사소음 예측에 대한 연구)

  • Kim, Hoi-Jeon;Ih, Jeong-Guon;Lee, Seong-Hyun;Shinoda, K.;Kitahara, S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.105-108
    • /
    • 2005
  • The radiated noise from the automotive intake system should be predicted at the design stage. To this end, the precise measurement of in-duct acoustic source parameters of the intake system, i.e., the source strength and source impedance, is essential. Most of previous works on the measurement of acoustic source parameters were performed under a fixed engine speed condition. However, the requirement of vehicle manufacturer is the noise radiation pattern as a function of engine speed. In this study, the direct method was employed to measure the source parameters of engine intake system under a fixed engine speed and engine run-up condition. It was noted that the frequency spectra of source impedance hardly changes with varying the engine speed. Thus, it is reasonable to calculate the source strength under the engine run-up condition by assuming that source impedance is invariant with engine speed. Measured and conventional source models, i.e., constant pressure source, constant velocity source, and non-reflective source, were utilized to predict insertion loss and radiated sound pressure level. A reasonable prediction accuracy of radiated sound pressure level spectra from the intake system was given in the test vehicle when using the measured source characteristics which were acquired under the operating condition.

  • PDF