• Title/Summary/Keyword: Engine Efficiency

Search Result 1,710, Processing Time 0.031 seconds

A Study on the Effect of Exhaust Pipe Length of 4 Cycle 4 Cylinder S.I. Engine on the Performance (배기관의 길이변화가 4사이클 4기통 전기 점화기관의 성능에 미치는 영향에 관한 연구)

  • 정수진;김태훈;조진호
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.3
    • /
    • pp.3-12
    • /
    • 1993
  • In reciprocating internal combustion engine, engine performance Is greatly affected by volumetric efficiency. For gas flow, the dynamic effects caused by the pressure pulsation have influence on the volumetric efficiency and correlate to the configuration and pipe length of intake-exhaust system. In this study, the analytic investigation of the unstudy flow In exhaust pipe has been carried out by using the method of characteristics to predict volumetric efficiency. In conculusion, it is possible to take account of the exhaust pipe tuning effect in predicting the engine performance, by the analytic solution of the unsteady flow in the pipes, and comparision of prediction with experimental datas show a good agreement on the pressure varision in the exhaust pipe which has Influence on the volumetric efficiency and performance of engine.

  • PDF

Generating efficiency and NOx emissions of a gas engine generator fuelled with biogas (바이오가스를 이용한 가스엔진 발전기의 발전효율 및 질소산화물 배출 특성)

  • Lee, Kyung-Taek;Cha, Hyo-Seok;Chun, Kwang-Min;Song, Soon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.306-309
    • /
    • 2009
  • Concern for new and renewable energy is growing globally. Biogas is one of the alternative fuels and consists of methane and carbon dioxide. It is difficult to achieve efficient engine operation due to a lower heating value of biogas compared to that of natural gas. In order to improve generating efficiency, finding an optimum point of ignition timing and excess air ratio is important. From this fact, generating efficiency and pollutant emissions of 2300cc gas engine generator operated by biogas as functions of ignition timings and excess air ratios were investigated in this study. As a test result, the generating efficiency of the gas engine generator using biogas was 27.34 % in the condition of the BTDC of $16^{\circ}$ and the excess air ratio of 1.4.

  • PDF

The Effects of Pulsating Flow on Volumetric Efficiency in the Intake and Exhaust System in a Turbocharged Diesel Engine (흡.배기 시스템의 맥동류가 과급디젤기관의 체적효율에 미치는 영향)

  • Kim, K.H.;Kang, H.Y.;Koh, D.K.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.11-17
    • /
    • 2009
  • This paper deals with the effects of pulsating flow on volumetric efficiency, which may be generated during the gas exchange procedure, due to piston motion, valve event on intake and exhaust stroke and unsteady flow of turbocharger of a three-cylinder four stroke turbo-charged diesel engine. Consequently, volumetric efficiency affects significantly the engine performance; torque characteristics, fuel economy and further to emission and noise level. As the expansion ratio became larger the engine speed varies and torque increases, the pressure pulsation in an exhaust gas pipe acts as an increasing factor of intake air charging capacity totally. The phase and amplitude of pressure pulsation in the intake system only affects volumetric efficiency favorably, if it is well matched and tuned effectively to the engine. Thus, to verify the exact phase and amplitude of the pressure variation is the ultimate solution for the air-flow ratio assessment in the intake stroke. Some experimental results of pressure diagrams in the intake pipe and gas-flow of turbine in-outlet are presented, under various kinds of operating condition.

  • PDF

Optimization of valve events in a 4 cycle reciprocating engine using measured intake and exhaust port pressures (4사이클 왕복동식 엔진에 있어서 흡배기 변동압 측정치를 이용한 흡기효율 최적화 컴퓨터 시뮬레이션)

  • 오세종;진영욱;정재화
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.500-507
    • /
    • 1989
  • The improvement of volumetric efficiency of air charging into combustion chamber is a primary requirement to obtain better mean effective pressure of an engine. Since parameters such as the air resistances in intake and exhaust flow passages, valve lift and valve timing influence greatly to the volumetric efficiency, it is very convenient and time saving if we can optimize these parameters by computation before we enter into long time fact finding engine tests. In this study we have developed a semi-empirical engine simulation program for the determinations of intake and exhaust valve timings, valve lifts, intake and exhaust port diameters in order to obtain highest volumetric efficiency. In this computation it requires only the measured variational pressures in intake and exhaust port. Using these variational pressures as an input data for our simulation program, we can calculate volumetric efficiency more accurately and can save computing time drastically. To confirm the validity of our simulation program we have made engine operation test in parallel and taken the experimental data. Comparing the computation result with the experimental data obtained through real engine test it has shown only the difference of 3%.

DRASTIC IMPROVEMENT OF THERMAL EFFICIENCY BY RAPID PISTON-MOVEMENT NEAR TDC

  • Moriyoshi, Y.;Sano, M.;Morikawa, K.;Kaneko, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.295-301
    • /
    • 2006
  • A new combustion method of high compression ratio SI engine was studied and proposed in order to achieve high thermal efficiency, comparable to that of CI engine. Compression ratio of SI engine is generally restricted by the knocking phenomena. A combustion chamber profile and a cranking mechanism were studied to avoid knocking with high compression ratio. Because reducing the end-gas temperature will suppress knocking, a combustion chamber was considered to have a wide surface at the end-gas region. However, wide surface will lead to large heat loss, which may cancel the gain of higher compression ratio operation. Thereby, a special cranking mechanism was adapted which allowed the piston to move rapidly near TDC. Numerical simulations were performed to optimize the cranking mechanism for achieving high thermal efficiency. An elliptic gear system and a leaf-shape gear system were employed in numerical simulations. Livengood-Wu integral, which is widely used to judge knocking occurrence, was calculated to verify the effect for the new concept. As a result, this concept can be operated at compression ratio of fourteen using a regular gasoline. A new single cylinder engine with compression ratio of twelve and TGV(Tumble Generation Valve) to enhance the turbulence and combustion speed was designed and built for proving its performance. The test results verified the predictions. Thermal efficiency was improve over 10% with compression ratio of twelve compared to an original engine with compression ratio of ten when strong turbulence was generated using TGV, leading to a fast combustion speed and reduced heat loss.

A Study on Engine Performance Characteristics with Variation of Operating Condition in Diesel Engine (디젤엔진의 운전인자 변화에 따른 엔진의 성능특성에 관한 연구)

  • Kim, GiBok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.645-651
    • /
    • 2020
  • In this study, It is necessary that we should study on more effective use about reciprocating engines because there are huge increase of air pollution. Diesel Engine is operated by injecting fuel directly to combustion chamber with high pressure. Diesel Engine has greater thermal efficiency and durability than Gasoline Engine. Also, Diesel Engine emitted low harmful exhaust witch caused by Gasoline Engine. There are many ways to improve of performance and decrease of harmful exhaust by controlling injection timing, changing amount of fuel and engine speed and so on. Especially, development and application of common rail direct injection Engine cause the increase of thermal efficiency by controlling a various of operating conditions. In this study we analyze characteristics of performance by changing a various of operating conditions.

A Study on Generating efficiency of the Double Acting Stirling Engine/Generator (양방향 스털링엔진/발전기의 효율 특성 연구)

  • PARK, SEONGJE;KO, JUNSEOK;HONG, YONGJU;KIM, HYOBONG;YEOM, HANKIL;IN, SEHWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.114-120
    • /
    • 2016
  • This paper describes generating efficiency characteristics of the double acting Stirling engine/generator for domestic small-scale CHP (Combined Heat and Power) system. In small distributed generation applications, Stirling engine has competition from fuel cell, microturbine and etc. In order to be economical in the applications, a long life with minimum maintenance is generally required. Free piston Stirling engine (FPSE) has no crank and rotating parts to generate lateral forces and require lubrication. Double acting Stirling engine/generator has one displacer and two power piston which are supported by flexure springs. Two power pistons oscillate with symmetric displacement and are connected with moving magnet type linear generators for power generation from PV work. In experiments, 1 kW class double acting free piston Stirling engine/generator is fabricated and tested. Heat is supplied to hot end of engine by the combustion of natural gas and converted to electric power by linear generators which are assembled with power pistons. The electric parameters such as voltage, current and phase are measured with for variable flow rate of fuel gas. Especially, generating efficiency of FPSE is measured with three different measurement methods. Generating efficiency of the double acting Stirling engine/alternator is about 24%.

A Study on the Multi-Tuning for Intake Manifold Using Engine Simulation (흡기관 복합공진을 위한 기관의 시뮬레이션 연구)

  • 이응석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3315-3325
    • /
    • 1994
  • To study the variation of charging efficiency in the engine intake, the method to change the natural frequency of intake system using the intake control valve was studied and it has been used in actual engine to increase the intake air. In this paper, the method of characteristics was used to analyze the non-steady state and compared with the experimental data of the 6-cylinder diesel engine showing the effectiveness of the method theoretically.

The Effects of Intake Pulsating Flow on Volumetric Efficiency in a Diesel Engine (디젤기관의 흡기 맥동류가 체적효율에 미치는 영향)

  • Kang, H.Y.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.19-25
    • /
    • 2005
  • Empirical experiments have been undertaken to investigate the effects of Intake Pulsating Flow on volumetric efficiency in a diesel engine. Waves occurs in the manifolds of engine owing to the periodic nature of the induction and exhaust processes caused by piston motion. During induction process, as waves travel both directions, they are reflected and interacted each other and pressure waves are transmitted through it. Hence, the flow become more complex and unsteady flow. These pressure waves act upon intake pulsating flow and affects on volumetric efficiency. In this paper the effects of change in length of induction pipes and wide range of engine speed on volumetric efficiency was examined and evaluated. It was found that volumetric efficiency was affected by intake pulsating flow with engine speed and the pipe length. The results obtained were considered by adopting a theory of wave action.

  • PDF

Investigation on the DeNOx Efficiency in Urea-SCR System at Various Operating Conditions and Injection Characteristics for a Passenger Diesel Engine (승용디젤엔진의 운전 조건 및 분사 조건 변경에 따른 Urea-SCR 시스템의 NOx 전환효율에 관한 연구)

  • Hong, Kil-Hwa;Hwang, In-Goo;Myung, Cha-Lee;Park, Sim-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.952-960
    • /
    • 2009
  • Selective Catalytic Reduction (SCR) system is a high-effective NOx reduction technology in diesel engines. As the emission standard of diesel engines is more stringent, vehicle manufactures makes efforts on emission technologies. This paper discusses the performance of Urea-SCR system according to the engine operating conditions in a passenger diesel engine. Engine test results in this paper show that it is important to consider the catalyst temperature and space velocity to obtain high NOx conversion efficiency. In condition of high catalyst temperature, over 90% NOx conversion efficiency is indicated. However, when catalyst temperature is low, NOx conversion efficiency was decreased. Also, it was shown that space velocity mainly effects on the DeNOx performance under 220 degree celsius of SCR catalyst temperature. As the urea injection pressure was decreased, NOx conversion efficiency was declined. It is concerned about urea droplet atomization. This work shown in this paper can lead to improved overall NOx conversion efficiency.