• Title/Summary/Keyword: Engine Cylinder

Search Result 1,363, Processing Time 0.029 seconds

A Study on In-cylinder Phenomena in a Swirl Type GDI Engine (스월형 GDI 엔진의 연소실내 현상에 관한 연구)

  • 김기성;박상규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.362-374
    • /
    • 2002
  • For the purpose of development of a GDI engine, the in-cylinder phenomena, such as the spray behaviors, fuel distributions, unburned fuel, and flame characteristics were investigated in a single cylinder GDI engine. The GDI engine was equipped with a swirl type electronic injector and SCV(Swirl Control Valve). PLIF(Planar Laser Induced Fluorescence) system with KrF Excimer laser was used far the measurements of fuel distributions. The effects of the injector specifications, such as the spray cone angle and the offset angle on the in-cylinder phenomena were investigated. As a result, it was found that the injected fuel collided with the bottom of the bowl and moved upward along the exhaust side wall of piston bowl. This fuel vapor played an important role in the instance of spark ignition. The unburned fuel and flame characteristics were greatly influenced by the injector specifications.

A Study on the Optimum Design of Exhaust System for 4 Cylinder Diesel Engine (4실린더 디젤기관 배기계의 최적설계에 관한연구)

  • 최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.405-411
    • /
    • 1999
  • Dynamic effect of gas in exhaust manifold influences the volumetric efficiency of the engine. Especially in case of multi-cylinder engine the shape of exhaust manifold is important for the opti-mum design of exhasut manifold complicated. In this paper the effects of exhaust manifold systems on volumetric efficiency were investigated for the 4 cylinder 4 stroke-cycle diesel engine. Volumetric efficiency was calculated by the method of characteristics. The calculation results coincided well the test results. This study showed that the appropriate position and diameter of exhaust manifold branch are important factors in increasing volumetric efficiency and decreasing pumping loss.

  • PDF

Effect of the Anti-Freeze Coolant on the Corrosion Resistance of Aluminum Cylinder Heads (알루미늄 실린더헤드의 내식성에 미치는 부동액의 영향)

  • 김영찬;배도인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.89-95
    • /
    • 1999
  • In this study, the corrosion resistance of the aluminum casting commercial materials used in the automotive engine parts with respect to the anti-freeze coolant environment has been tested by the potentio dynamic method. especially, the effect of borax additive in engine coolant on the corrosion resistance of the aluminum casting materials has been evaluated. It was found that the borax in commercial engine coolant, used to prevent the corrosion in cast iron engine, causes a pit corrosion of aluminum casting materials at high temperature. During the engine endurance test with the coolant containing borax, the aluminum cylinder head was failed by the pitting corrosion near the exhaust port. Conclusively, it was suggested that the use of borax in the anti-freeze coolant be restricted for the automotive with aluminum cylinder head.

  • PDF

An Analytic Method of Combustion Characteristics in a Single-Cylinder Type Disel Engine (단기통형 디젤기관의 연소특성 분석방법)

  • Cho, H.K.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.1
    • /
    • pp.5-17
    • /
    • 1992
  • To develop an analytic method of combustion characteristics in a small sized and single cylinder type diesel engine for a power tiller, 1) the theoritical analysis of combustion gas in engine cylinder was performed based on thermoscience and 2) the computer program which could be used to calculate those values of the apparent burning rate, the heat loss, the gas temperature and the fuel-air equivalence ratio with the experimental cylinder pressure data, was developed. This method would provide the practical and quantative data for the diesel combustion process. Through the use of this method, following details would be obtained: 1) the application in the modeling of combustion process without detail knowledeg of combustion process, 2) the basis for the complete modeling of diesel engine, and 3) the basic information for the design of combustion chamber by the prediction of engine performance.

  • PDF

Investigation of the Liquid Fuel Film Behavior on the Cylinder Liner in an SI Engine (가시화를 이용한 가솔린 엔진의 실린더 벽면에서의 연료액막 거동 분석)

  • Cho, Hoon;Hwang, Seung-Hwan;Lee, Jong-Hwa;Min, Kyoung-Doug
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1370-1376
    • /
    • 2003
  • The investigation of liquid fuel film on the cylinder liner is an essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this research, two-dimensional visualization was carried out to investigate the liquid fuel film on the quartz liner in the optical engine. For this, the optical engine with hydraulic system was designed based on the commercial SI engine. The visualization was based on the laser-induced fluorescence with total reflection technique. Using a quartz liner and a special lens, only the liquid fuel film on the liner was visualized. With using this technique, the distribution of the fuel film on the cylinder liner was measured for different engine conditions and injection timing in the optical engine.

Structural Analysis on the Heavy Duty Diesel Engine with Compacted Graphite Iron (CGI를 이용한 대형 디젤엔진의 구조해석)

  • Lee, Jae-Ok;Lee, Young-Shin;Lee, Hyun-Seung;Kim, Jae-Hoon;Jun, Joon-Tak;Kim, Chul-Goo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.602-607
    • /
    • 2007
  • The heavy duty diesel engine must have a large output for maintaining excellent mobility. The compacted graphite iron (CGI) is a material currently under study for the engine demanded for high torque, durability, stiffness and fatigue. In this study, three dimensional finite element model of a heavy-duty diesel engine was developed to conduct the stress analysis by using property of CGI. The FE model of the heavy duty diesel engine section consisting with four half cylinder was selected. The heavy duty diesel engine section include cylinder block, cylinder head, liner, bearing cap, bearing and bolt. The loading conditions of engine are pre-fit load, assembly force and gas force.

  • PDF

An Experimental Study for the Effect of Intake Port Flows on the Tumble Generation and Breakdown in a Motored Engine (모터링엔진의 흡기포트 유동변화에 따른 텀블생성 및 소멸에 관한 실험적 연구)

  • 강건용;이진욱;정석용;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.912-919
    • /
    • 1994
  • The engine combustion is one of the most important processes affecting performance and emissions. One effective way to improve the engine combustion is to control the motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence at compression(TDC) process in S.I. engine. It is believed that the tumble and swirl motion generated during intake stroke breaks down into small-scale turbulence in the compression stroke of the cycle. However, the exact nature of this relationship is not well known. This paper describes the tumble flow measurements inside the cylinder of a 4-valve S.I. engine using laser Doppler velocimetry(LDV) under motoring(non-firing) conditions. This is conducted on an optically assesed single cylinder research engine under motored conditions at an engine speed of 1000rpm. Three different cylinder head intake port configurations are studied to develop a better understanding the tumble flow generation, development, and breakdown mechanisms.

Effect of Boosted Intake Pressure on Stratified Combustion of a Gasoline Direct Injection Engine (가솔린 직접분사 엔진의 흡기과급이 성층화 연소에 미치는 영향)

  • 조남효;박형철;김미로
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.48-55
    • /
    • 2003
  • The effects of pressure charge on combustion stability and emissions have been analyzed using a GDI single cylinder engine. A late injection mode of stratified condition at the air-fuel ratio of 40:1 for 1200∼2400 rpm was tested while the boosted pressure ratio was increased up to 1.5:1. In-cylinder CFD analysis was also performed for better understanding of in-cylinder flow and fuel spray behavior. With a higher boosted pressure ratio the IMEP was increased greatly due to the increased engine load, and the ISFC was improved by more than 10% at all engine speeds. The regime of stable stratified combustion was extended to a higher engine speed, but the spark ignition angle had to be more advanced for stable combustion. The emissions of ISHC and ISNOx did not show a particular trend for the increased engine speed but a general trend of lower ISHC and higher ISNOx for a gasoline engine.

Soot Measurement in an Optically Accessible Diesel Engine Using Laser Sheet 1st report : The Development of Optically Accessible Diesel Engine and Photography of 2D Soot Images Using Laser Sheet (레이저시트광을 이용한 가시화 디젤엔진에서의 Soot 계측 제1보 : 가시화 디젤엔진의 제작 및 레이저를 이용한 Soot의 2D 화상촬영)

  • 이명준;박태기;하종률;정성식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.64-71
    • /
    • 2000
  • In order to clarify the characteristics of soot formation and oxidation in-cylinder of a diesel engine, it is necessary to diagnose accurately for combustion of in-cylinder. The past techniques for soot measurement have limitations in providing the characteristics of soot in a diesel engine, whereas, laser-based 2D imaging diagnostics have the potential to provide better temporally and spatially resolved measurements of the soot distribution. We rebuilt an optically accessible diesel engine which is similar to the conditions of a conventional engine and tried to measure soot distribution in a cylinder of the diesel engine using laser induced scattering(LIS) and laser induced incandescence(LII). Some results were acquired in this study. LIS and LII signal that show soot distribution of a in-cylinder were taken by ICCD properly. The signal of LIS was intenser than that of LII. Although they have some differences of signal intensity in early combusion period, both of signals show that they are generally similar in late combustion period, after ATDC 50 degree.

  • PDF

An Experimental Study on Improved Fuel Economy and Lower Exhaust Emissions of New Automotive Engine adopting Split Cooling System

  • Oh, C.S.;Lee, J.H.;Shin, S.Y.;Kim, W.T.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.407-408
    • /
    • 2002
  • This paper presents a split cooling system for a new inline 4-cylinder automotive engine. The split cooling system circulates coolant to the cylinder head and cylinder block separately. The coolant flow in the cylinder block is controlled by a $2^{nd}$ Thermostat installed at the outlet of cylinder block. The $2^{nd}$ thermostat closes when the coolant temperature is low. And this makes the coolant flow in cylinder block nearly stagnant, thereby reducing the coolant-side heat transfer coefficient and raising cylinder bore temperature. The $2^{nd}$ thermostat starts to open when the coolant temperature reaches a specified temperature. The test results on engine dynamometer show improved fuel economy and lower exhaust emission which result from the decrease in friction works and cooling loss. Also, several vehicle tests, with application of the new engine have been performed. Fuel economy improvement of 0.5{\sim}2.0%$ yields from different test modes and details are discussed in this paper.

  • PDF