• Title/Summary/Keyword: Engine Control

Search Result 2,127, Processing Time 0.027 seconds

Implementation of Active Sound Enrichment Control for Improving Engine Sound Quality Inside the Cabin of a Passenger Car (차량 실내공간의 가속 시 엔진음 음질 향상을 위한 실시간 능동음향증강 제어 구현)

  • Lee, Young-Sup;Kim, Jeakwan;Ryu, Seokhoon;Kim, Seonghyeon;Park, Dong Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.195-202
    • /
    • 2016
  • In this study, a concept of active sound enrichment (ASE) control system was implemented and demonstrated for improving engine sound quality inside the cabin of a passenger car during acceleration. Unlike the active noise control cancels the noise for disturbance rejection, the ASE adds additional sound to the noise for tracking control. This approach requires a new algorithm to provide additional artificial sound to the original engine sound using active control strategy to achieve a target sound profile, which is predefined to satisfy required interior sound quality. The ASE algorithm was implemented in a digital controller dSPACE DS1401 and real-time control experiment was accomplished in an actual car. The ASE control results show that the actively enriched sound of each engine order against RPM tracks the target profiles precisely and quickly and improves the discontinuity, the level ratios and the sound pressure level of each engine order. Thus it is anticipated the ASE system can be applied for the improvement of the engine sound quality inside the cabin during acceleration.

Modeling and Control of an Engine Mount Using ER Fluids and Piezoactuators (ER 유체와 압전작동기를 이용한 엔진마운트의 모델링 및 제어)

  • Choi, Seung-Hoon;Choi, Young-Tai;Choi, Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.500-510
    • /
    • 1996
  • This paper presents a new prototype of an engine mount for a passenger vehicle featuring ER(elector-rheological) fluids and piezoactuators. Conventional rubber mounts and various types of passive or semi-active hydraulic engine mounts have their own functional aims on the limited frequency band in the board engine operating frequency range. However, the proposed engine mount covers all frequency range of the engine operation. A mathematical model of the proposed engine mount is derived using the bond graph method which is inherently domain, the ER fluid is activated upon imposing electric field for vibration isolation while the piezoactuator. Computer control electric fluid for the ER fluid H.inf. cotrol technique is adopted for the piezoactuator. Computer simulation is undertaken in order to demonstrate isolation efficiency of the engine mount over wide operating frequency range.

Slack Control for Laying a Submarine Cable (해저 케이블의 포설을 위한 여장제어)

  • Yang, Seung-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.502-508
    • /
    • 2001
  • In this paper, slack is computed from a comparison of the cable pay out rate and the ship ground speed in accordance with laying conditions, and the speed controller of the cable engine based on an H(sub)$\infty$ servo control id designed for adjusting the cable engine in order to lay a desired amount of slack. The controller is designed for robust tracking of the cable engine under disturbances. The performance of the designed controller is evaluated by computer simulation, and, consequently, a feasibility study for laying the submarine cable stably is done through analyzing simulation results.

  • PDF

A Study on Marine Diesel Engine Control by Application of Self-Tuning Control (자기동조제어에 의한 선박용 디젤엔진제어에 관한 연구)

  • 양주호
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.3
    • /
    • pp.262-273
    • /
    • 1992
  • In this study, we selected a DC servo motor as an actuator of the marine diesel engine governor and constructed the position control system of the DC servo motor using the algorithm proposed by authors. Next, we proposed an another method to construct an adaptive control system for marine diesel engine by regarding the controlled system including the DC servo motor as a second order controlled system and verified the validity of this method through the real time control responses. Finally, the results have shown a good response characteristic.

  • PDF

Design and Development of an Electronic Control Unit of the Automobile Engine for Optimal Fuel Injection and Spark Timing Control (최적의 연료분사와 점화시기 제어를 위한 자동차 엔진용 전자제어장치 설계 및 개발)

  • 김태훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.644-654
    • /
    • 2001
  • In this paper, an electronic control unit of the automobile engine for optimal fuel injection an spark timing control has been designed and developed. This system includes hardware and software for a precise control of fuel injection and ignition timing. Especially, the crank angle sensor provides two separate signals: One is the position signal (POS) which indicates 180 degree pulses per revolution, and the other is the reference signal (REF) that represents each cylinder individually. Consequently, the developed engine control system has been able to control fuel injection and ignition timing more quickly and accurately. Through the experiment, it has been found that the fuel injection duration and the position of MBT have been influenced by coolant temperature, air flow rate and engine speed.

  • PDF

A Study on the Improvement of Engine Starting Performance for Gasoline Engine Ignition System using Electronic Control (가솔린관 점화장치의 전자제어에 의한 시동성향상에 관한 연구)

  • 김광조;김남호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.215-221
    • /
    • 1997
  • The ability of the engine starting performance of conventional ignition system being currently used in automobile gasoline engine is investigated, and the method of improving is discussed and experimented. The conventional ignition system cannot obtain high ignited voltage because its current is limited by decreasing of terminal voltage of battery at starting the engine also causes irregularity in the starting engine. This paper shows that problem can be improved practically by control of ignition energy properly according to the engine speed, consequently this experimental ignition system can eliminate to remarkable extent the function of the engine starting, and also enhance the performance of the engine at high speed.

  • PDF

Component-Level Humidity Correction for Gas Turbine Engine Using Map Transposition Technique (특성 곡선 전치 기법을 이용한 가스 터어빈 엔진의 구성품 수준 습도 보정)

  • 이시우;정명균;임진식
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.83-94
    • /
    • 2000
  • A systematic humidity correction technique that can be used for any type of engine control mode is developed to predict the variation of engine performance due to inlet humidity. Limitation of conventional method is rot identified and then, a new method is proposed to take into account the humidity effects on each engine component characteristics and to find the variation of equilibrium running point through a re-match process between the components with a given engine control variable depending on the humidity of inlet. Comparisons are made between two methods for a single spool gas turbine engine, and it was found that the conventional method leads to invalid correction when a physical variable such as rotational speed is controlled for engine operation in humid environment. It was also found that the accuracy of the conventional method depends on the engine control mode and the engine configuration whereas the proposed method can be used for any type of engine control mode and engine configuration.

  • PDF

Feedforward EGR Control of a Passenger Car Diesel Engine Equipped with a DC Motor Type EGR Valve (DC 모터방식 EGR 밸브를 적용한 승용디젤엔진의 앞먹임 공기량 제어에 관한 연구)

  • Oh, Byoung-Gl;Lee, Min-Kwang;Park, Yeong-Seop;Lee, Kang-Yoon;SunWoo, Myoung-Ho;Nam, Ki-Hoon;Cho, Sung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.14-21
    • /
    • 2011
  • In diesel engines, accurate EGR control is important due to its effect on nitrogen oxide and particulate matter emissions. Conventional EGR control system comprises a PI feedback controller for tracking target air mass flow and a feedforward controller for fast response. Physically, the EGR flow is affected by EGR valve lift and thermodynamic properties of the EGR path, such as pressures and temperatures. However, the conventional feedforward control output is indirectly derived from engine operating conditions, such as engine rotational speed and fuel injection quantity. Accordingly, the conventional feedforward control action counteracts the feedback controller in certain operating conditions. In order to improve this disadvantage, in this study, we proposed feedforward EGR control algorithm based on a physical model of the EGR system. The proposed EGR control strategy was validated with a 3.0 liter common rail direct injection diesel engine equipped with a DC motor type EGR valve.

Operational Control Logic of Series Hybrid Power System for the Unmanned Aerial Vehicle (무인기용 직렬 하이브리드 동력시스템 운용 제어로직)

  • Lee, Bohwa;Park, Poomin;Kim, Keunbae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.68-76
    • /
    • 2021
  • The series hybrid system targeted in this study uses a reciprocating engine, a generator, and a battery as a main power source for the unmanned aerial vehicle. The generator is directly connected to the drive shaft of the reciprocating engine, and the operating characteristics of the reciprocating engine-generator set were confirmed through ground integration tests. In this study, based on the test results, a control logic is proposed an efficient use of the reciprocating engine-generator power and battery power. Also, the power variations of the reciprocating engine-generator and battery according to the logic were verified through simulation. As a result, it was confirmed that the engine-generator power supplied the power required for propulsion along with the battery power by the proposed control logic.

Responsibility of Control System of Engine Intake Valve with Linear Electromagnetic Actuator

  • Nakpipat, Tawatchai;Kusaka, Akihiko;Ennoji, Hisayuki;Iijima, Toshio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.291-295
    • /
    • 2004
  • New valve driving system to control for the best volumetric efficiency at each load of an internal combustion engine within one engine cycle has been developed. The system needs to reduce pumping loss that cause by throttle valve during the intake valve is opened. In this system the intake valve is driven by a linear DC electromagnetic actuator which is controlled by personal computer. The result is compared both installed and uninstalled actuator into the cylinder head. By both of experimental and numerical calculation, the responsibility of the valve driving system to the engine speed was examined

  • PDF