• Title/Summary/Keyword: Engine Combustion

Search Result 2,563, Processing Time 0.038 seconds

Effects of Premixed Fuel and EGR on the Combustion and Emissions Characteristics of HCCI Diesel Engine (HCCI디젤엔진의 연소 및 배기 특성에 미치는 예혼합 연료와 EGR의 영향)

  • Yoon, Young-Hoon;Kim, Dae-Sik;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.1006-1012
    • /
    • 2005
  • The effects of premixed fuels(diesel or n-heptane) and exhaust gas recirculation on combustion and exhaust emission characteristics in a DI diesel engine were experimentally investigated. To improve homogeneity of fuel-air mixture in the conventional diesel engine, the premixed fuel is injected by high pressure(5.5 MPa) into the premixing chamber prior to engine cylinder, And several additional systems such as an EGR system, air heating system and back pressure control system were equipped in the DI diesel engine. The results showed that premixed fuel-air mixture undergoes typical HCCI combustion prior to the combustion of DI diesel fuel. The ignition timing of HCCI combustion is delayed by application of EGR, and it also shows that HCCI combustion can be controlled by an EGR.

Effect of Reentrant Type Bowl Geometry on Combustion Characteristics in Diesel Engine -Effect of Reentrant Angle and Cupola Height of Bowl Center- (리엔트런트형 연소실 형상이 디젤기관의 연소특성에 미치는 영향 -리엔트런트 각도 및 중앙돌기부 높이의 효과-)

  • Kwon, S.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.37-45
    • /
    • 1995
  • Effect of reentrant type bowl geometry on combustion characteristics was investigated in a D.I. diesel engine. The main factor was the cupola height of bowl center and the reentrant angle of combustion chamber, and the cylinder pressure, engine performance and emissions of the engine using the total 11 kinds of the combustion chamber were measured by test. The results are as follows. The NOx decreases by increasing the cupola height of bowl center because it makes the decreasing of maximum combustion pressure by the heat loss and smooth combustion from good airflow. The smoke increases by increasing the reentrant angle at high speed range of the engine, but decrease at low and medium speed range until the reentrant angle becomes $15^{\circ}$.

  • PDF

Combustion and Emission Characteristics of Premixed Charge Compression Ignition Diesel Engine (예혼합 압축 착화 디젤 엔진의 연소 및 배기 특성)

  • Heo, Seong-Geun;Kim, Dac-Sik;Lee, Chang-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.187-192
    • /
    • 2001
  • A homogeneous premixed charge compression ignition engine is experimentally investigated for the reduction of exhaust emissions in diesel engines. In this study, the premixed fuel is injected into the intake manifold to form homogeneous pre-mixture in the combustion chamber and then this pre-mixture is ignited by small amount of diesel fuel directly injected into the cylinder. In the premixed charge compression ignition engine, NOx and smoke concentration of the exhaust emissions were reduced simultaneously as compared with the conventional diesel engine. But HC and CO emissions were increased with the increase of premixed ratio. The combustion characteristics of premixed charged diesel engine such as the power output, the rate of heat release, and the other characteristics are discussed.

  • PDF

A Study on Mixture Composition and Combustion Characteristics in Gasoline Engine (가솔린 기관의 혼합기 조성과 연소 특성에 관한 연구)

  • Kim, Gi-Bok;Yoon, Chang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.197-206
    • /
    • 2015
  • Recently the automobile engine has been developed in achieving the high performance, fuel economy, and emission reduction. In a conventional spark ignition engine the fuel and air are mixed together in the intake system, inducted through the intake valve into the cylinder, and then compressed. Under normal operating conditions, the combustion is initiated towards the end of the compression stroke at the spark plug by an electric discharge. Following inflammation, a flame develops and propagates through this premixed fuel-air mixture. Therefore the state of mixture is very important in the combustion and emission characteristics. In this study the combustion and emission characteristics were tested and analyzed with changing the mixture composition and engine operating parameters in order to improve the combustion and performance in engine.

A study on the thermodynamic analysis of combustion characteristics of diesel engine (디이젤機關 燃燒特性의 熱力學的 解析에 관한 硏究)

  • 이창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.215-222
    • /
    • 1986
  • This paper presents the results of investigation, the aim of which was to predict theoretically the processes of thermodynamic cycle of M-combustion chamber type diesel engine. The combustion characteristics in cylinder are evaluated from the energy equation for an thermodynamic system in engine cylinder. In order to predict the combustion pressure in cylinder, the engine is divided in various control volumes. The simulation results of combustion characteristics show that the comparison of computed and measured values brings about the good coincidence.

STUDY ON COMBUSTION CHARACTERISTICS AND APPLICATION OF RADIAL INDUCED IGNITION METHOD IN AN ACTUAL ENGINE

  • PARK J. S.;KANG B. M.;KIM K. J.;LEE T. W.;YEOM J. K.;CHUNG S. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.555-561
    • /
    • 2005
  • This experimental study was executed to obtain basic data for actual engine operation using radical induced ignition method (RI) which can achieve emission reduction and high efficiency due to the rapid bulk combustion. In this study, a direct injection diesel engine was converted into SI type engine with a sparkplug. The modified SI type engine can be divided into two classes. One is the SI engine with a sparkplug only at the cylinder head, and the other is the SI engine with the sparkplug which is enveloped in a sub-chamber. Also, a basic experimental was conducted in order to investigate combustion mechanism of radical induced injection before the experiment execution for actual engine using the modified SI engine. The bulk combustion phenomenon of radical induced ignition method was analyzed from the basic experiment by using a constant volume chamber. Volume value of sub-chamber used in this experiment is approximately $0.2\%$ of one of the main combustion chamber. In this paper, combustion characteristics using radical induced injection method was compared with that of using spark ignition method according to change in the engine speed and equivalence ratio. As a result, in the case of the radical induced injection engine, the combustion duration and cycle variation were respectively reduced ranged from $\Phi$(equivalence ratio)=0.8 (lean mixture ratio) to $\Phi$=1.0 (stoichiometric ratio).

Theoretical Prediction Method on Occurrence of Spark Knock (스파크노크 발생에 대한 이론적 예측방법)

  • 이내현;오영일;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3326-3334
    • /
    • 1994
  • To theoretically predict knock occurrence in S. I. engine as a function of engine design and operating parameters, transient local temperature and pressure, mixture density of flame front in combustion period are calculated. We next determined normal combustion period and auto ignition period of end gas using the prediction method on occurrence of spark knock which we suggested. We predict knock occurrence in S. I. engine by comparing consecutively normal combustion period with the auto ignition period of end gas in combustion period. Engine design and operating parameters such as compression ratio, engine speed, spark timing, inlet temperature and pressure are taken into account in this calculations. The predicted result are well matched with the experimental results in turbocharged engine. Therefore, this method will provide the systematic guideline for designing engines in view of knocking limits.

Effects of Fuel Injection Conditions on Combustion Characteristics of a DI Diesel Engine (직접분사식 디젤 엔진에서 연료 분사 인자에 따른 연소 특성)

  • Kook, Sang-Hoon;Yu, Jun;Park, Cheol-Woong;Bae, Choong-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.33-38
    • /
    • 2002
  • An optical single cylinder diesel engine equipped with a common-rail injection system has been built to investigate diesel combustion and emission characteristics. Three optical widows (piston crown quartz for bottom view of the cylinder, upper piston quartz for allowing laser sheet and liner quartz for side view) have been placed in the optical engine to visualize spray characteristics and combustion process inside the cylinder. Before doing further research using various optical diagnostics with the optical engine, fundamental combustion experiments and flame visualization incorporating a high speed motion analyser have been carried out with a wide range of engine operating conditions.

  • PDF

Experimental Noise Separation of a Diesel Engine (디젤 엔진소음 (1) ; 실험적 소음 분리기법)

  • 강종민;안기환;박해성;조우흠
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.757-764
    • /
    • 1997
  • The well-developed noise separatrion techniques are applied to the V8 RG8 Diesel engine for the engine noise reduction of a commercial vehicle. For various loads and engine RPM's, the contribution of the combustion oriented noise and the mechanically induced noise was calculated under the small variations of the injection timing. For the given Diesel engine the mechanical noise is dominant for low rpm, and the contribution of the combustion noise becomes greater as the rpm increases. The combustion noise is dominant around 2kHz range or under 50% loading condition.

  • PDF

HYDROGEN USE IN INTERNAL COMBUSTION ENGINE: A REVIEW

  • Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.87-99
    • /
    • 2015
  • Fast depletion of fossil fuels is urgently demanding a carry out work for research to find out the viable alternative fuels for meeting sustainable energy demand with minimum environmental impact. In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen is expected to be one of the most important fuels in the near future to meet the stringent emission norms. The use of the hydrogen as fuel in the internal combustion engine represents an alternative use to replace the hydrocarbons fuels, which produce polluting gases such as carbon monoxide (CO), hydro carbon (HC) during combustion. In this paper contemporary research on the hydrogen-fuelled internal combustion engine can be given. First hydrogen-engine fundamentals were described by examining the engine-specific properties of hydrogen and then existing literature were surveyed.