• 제목/요약/키워드: Energy-weighted algorithm

검색결과 54건 처리시간 0.021초

Evaluation of Source Identification Method Based on Energy-Weighting Level with Portal Monitoring System Using Plastic Scintillator

  • Lee, Hyun Cheol;Koo, Bon Tack;Choi, Chang Il;Park, Chang Su;Kwon, Jeongwan;Kim, Hong-Suk;Chung, Heejun;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • 제45권3호
    • /
    • pp.117-129
    • /
    • 2020
  • Background: Radiation portal monitors (RPMs) involving plastic scintillators installed at the border inspection sites can detect illicit trafficking of radioactive sources in cargo containers within seconds. However, RPMs may generate false alarms because of the naturally occurring radioactive materials. To manage these false alarms, we previously suggested an energy-weighted algorithm that emphasizes the Compton-edge area as an outstanding peak. This study intends to evaluate the identification of radioactive sources using an improved energy-weighted algorithm. Materials and Methods: The algorithm was modified by increasing the energy weighting factor, and different peak combinations of the energy-weighted spectra were tested for source identification. A commercialized RPM system was used to measure the energy-weighted spectra. The RPM comprised two large plastic scintillators with dimensions of 174 × 29 × 7 ㎤ facing each other at a distance of 4.6 m. In addition, the in-house-fabricated signal processing boards were connected to collect the signal converted into a spectrum. Further, the spectra from eight radioactive sources, including special nuclear materials (SNMs), which were set in motion using a linear motion system (LMS) and a cargo truck, were estimated to identify the source identification rate. Results and Discussion: Each energy-weighted spectrum exhibited a specific peak location, although high statistical fluctuation errors could be observed in the spectrum with the increasing source speed. In particular, 137Cs and 60Co in motion were identified completely (100%) at speeds of 5 and 10 km/hr. Further, SNMs, which trigger the RPM alarm, were identified approximately 80% of the time at both the aforementioned speeds. Conclusion: Using the modified energy-weighted algorithm, several characteristics of the energy weighted spectra could be observed when the used sources were in motion and when the geometric efficiency was low. In particular, the discrimination between 60Co and 40K, which triggers false alarms at the primary inspection sites, can be improved using the proposed algorithm.

IR-UWB 시스템을 위한 선택적 가중치 결합 에너지 검출기(S-WED)와 동기 알고리즘 (Selective-Weighted Energy Detector(S-WED) and Synchronization algorithm for IR-UWB systems)

  • 지신애;김재석
    • 전자공학회논문지
    • /
    • 제50권7호
    • /
    • pp.3-9
    • /
    • 2013
  • 본 논문에서는 IR-UWB (Ultra Wideband-Impulse Radio) 시스템을 위한 선택적 가중치를 적용한 에너지 검출기와 이에 적합한 동기 방법이 제안되었다. 구현이 용이한 에너지 검출기(ED)는 IR-UWB 시스템의 수신기로 많이 사용되나, 심볼 주기로 샘플링 된 에너지를 데이터 검출에 이용하기 때문에 수신 성능이 좋지 않은 단점이 있다. 이러한 단순한 에너지 검출기의 성능을 개선하고자 가중치를 적용한 에너지 검출기가 제안 되었다. 가중치를 적용한 에너지 검출기는 데이터 검출 이전에 동기 획득과 함께 가중치의 결정이 요구된다. 한편, 에너지를 이용한 검출 방법에서 최적의 가중치는 에너지 값이 되기 때문에 동기 획득과 가중치 획득이 동시에 이루어질 수 있다. 본 논문에서는 이러한 점을 이용하여 심볼 동기와 가중치 획득을 동시에 얻는 간단한 동기 방법을 제안한다. 또한, 제안된 알고리즘에서는 잡음 레벨 이하의 구간은 에너지 누적에서 제외함으로써 기존의 WED 보다 간단하지만 낮은 SNR에서 좀 더 향상된 성능을 가진 수신기를 얻을 수 있게 된다. 제안된 알고리즘은 IEEE 802.15.4a의 프리앰블 심볼과 채널 모델을 이용해 모의실험을 통해 검증되었다.

실시간 가중 회기최소자승법을 사용한 익일 부하예측 (Real-Time Building Load Prediction by the On-Line Weighted Recursive Least Square Method)

  • 한도영;이재무
    • 설비공학논문집
    • /
    • 제12권6호
    • /
    • pp.609-615
    • /
    • 2000
  • The energy conservation is one of the most important issues in recent years. Especially, the energy conservation through improved control strategies is one of the most highly possible area to be implemented in the near future. The energy conservation of the ice storage system can be accomplished through the improved control strategies. A real time building load prediction algorithm was developed. The expected highest and the lowest outdoor temperature of the next day were used to estimate the next day outdoor temperature profile. The measured dry bulb temperature and the measured building load were used to estimate system parameters by using the on-line weighted recursive least square method. The estimated hourly outdoor temperatures and the estimated hourly system parameters were used to predict the next day hourly building loads. In order to see the effectiveness of the building load prediction algorithm, two different types of building models were selected and analysed. The simulation results show less than 1% in error for the prediction of the next day building loads. Therefore, this algorithm may successfully be used for the development of improved control algorithms of the ice storage system.

  • PDF

Frequency Control of in Hybrid Wind Power System using Flywheel Energy Storage System

  • Lee, Jeong-Phil;Kim, Han-Guen
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권2호
    • /
    • pp.229-234
    • /
    • 2014
  • In this paper, a design problem of the flywheel energy storage system controller using genetic algorithm (GA) is investigated for a frequency control of the wind diesel hybrid power generation system in an isolated power system. In order to select parameters of the FESS controller, two performance indexes are used. We evaluated a frequency control effect for the wind diesel hybrid power system according to change of the weighted values of a performance index. To verify performance of the FESS controller according to the weighted value of the performance index, the frequency domain analysis using a singular value bode diagram and the dynamic simulations for various weighted values of performance index were performed. To verify control performance of the designed FESS controller, the eigenvalue analysis and the dynamic simulations were performed. The control characteristics with the two designed FESS controller were compared with that of the conventional pitch controller. The simulation results showed that the FESS controller provided better dynamic responses in comparison with the conventional controller.

Artificial intelligence (AI) based analysis for global warming mitigations of non-carbon emitted nuclear energy productions

  • Tae Ho Woo
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4282-4286
    • /
    • 2023
  • Nuclear energy is estimated by the machine learning method as the mathematical quantifications where neural networking is the major algorithm of the data propagations from input to output. As the aspect of nuclear energy, the other energy sources of the traditional carbon emission-characterized oil and coal are compared. The artificial intelligence (AI) oriented algorithm like the intelligence of a robot is applied to the modeling in which the mimicking of biological neurons is utilized in the mathematical calculations. There are graphs for nuclear priority weighted by climate factor and for carbon dioxide mitigation weighted by climate factor in which the carbon dioxide quantities are divided by the weighting that produces some results. Nuclear Priority and CO2 Mitigation values give the dimensionless values that are the comparative quantities with the normalization in 2010. The values are 1.0 in 2010 of the graphs which are changed to 24.318 and 0.0657 in 2040, respectively. So, the carbon dioxide emissions could be reduced in this study.

무선 채널의 에너지 소비를 줄이기 위한 공평 큐잉 알고리즘 (A Fair Queuing Algorithm to Reduce Energy Consumption in Wireless Channels)

  • 김태준
    • 한국멀티미디어학회논문지
    • /
    • 제10권7호
    • /
    • pp.893-901
    • /
    • 2007
  • 품질 보장을 요구하는 실시간 멀티미디어 서비스가 이동 무선 네트워크로 확산됨에 따라 무선 채널에서 에너지 효율의 중요성이 더욱 강조되고 있으며, DMS(Dynamic Modulation Scaling)의 도입으로 스케줄러의 출력 링크의 속도를 낮춤으로서 무선 채널의 에너지 소비를 줄일 수 있게 되었다. 본 연구에서는 WFQ(Weighted Fair Queuing)의 대역폭 이용도 저하 문제를 해결한 LOFQ(Latency-Optimized Fair Queuing)를 확장하여 출력 링크의 속도를 줄일 수 있는 공평 큐잉 알고리즘인 REFQ(Rate Efficient Fair Queuing)를 제안하고 성능을 평가한다. 평가결과 WFQ에 비해서 35%의 링크 속도 절감 효과를 얻었고, DMS 무선 모뎀에 적용 시 에너지 소비를 최대 90% 정도 줄일 수 있었다.

  • PDF

Radionuclide identification based on energy-weighted algorithm and machine learning applied to a multi-array plastic scintillator

  • Hyun Cheol Lee ;Bon Tack Koo ;Ju Young Jeon ;Bo-Wi Cheon ;Do Hyeon Yoo ;Heejun Chung;Chul Hee Min
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3907-3912
    • /
    • 2023
  • Radiation portal monitors (RPMs) installed at airports and harbors to prevent illicit trafficking of radioactive materials generally use large plastic scintillators. However, their energy resolution is poor and radionuclide identification is nearly unfeasible. In this study, to improve isotope identification, a RPM system based on a multi-array plastic scintillator and convolutional neural network (CNN) was evaluated by measuring the spectra of radioactive sources. A multi-array plastic scintillator comprising an assembly of 14 hexagonal scintillators was fabricated within an area of 50 × 100 cm2. The energy spectra of 137Cs, 60Co, 226Ra, and 4K (KCl) were measured at speeds of 10-30 km/h, respectively, and an energy-weighted algorithm was applied. For the CNN, 700 and 300 spectral images were used as training and testing images, respectively. Compared to the conventional plastic scintillator, the multi-arrayed detector showed a high collection probability of the optical photons generated inside. A Compton maximum peak was observed for four moving radiation sources, and the CNN-based classification results showed that at least 70% was discriminated. Under the speed condition, the spectral fluctuations were higher than those under dwelling condition. However, the machine learning results demonstrated that a considerably high level of nuclide discrimination was possible under source movement conditions.

A Virtual Laboratory to Practice Mobile Wireless Sensor Networks: A Case Study on Energy Efficient and Safe Weighted Clustering Algorithm

  • Dahane, Amine;Berrached, Nasr-Eddine;Loukil, Abdelhamid
    • Journal of Information Processing Systems
    • /
    • 제11권2호
    • /
    • pp.205-228
    • /
    • 2015
  • In this paper, we present a virtual laboratory platform (VLP) baptized Mercury allowing students to make practical work (PW) on different aspects of mobile wireless sensor networks (WSNs). Our choice of WSNs is motivated mainly by the use of real experiments needed in most courses about WSNs. These experiments require an expensive investment and a lot of nodes in the classroom. To illustrate our study, we propose a course related to energy efficient and safe weighted clustering algorithm. This algorithm which is coupled with suitable routing protocols, aims to maintain stable clustering structure, to prevent most routing attacks on sensor networks, to guaranty energy saving in order to extend the lifespan of the network. It also offers a better performance in terms of the number of re-affiliations. The platform presented here aims at showing the feasibility, the flexibility and the reduced cost of such a realization. We demonstrate the performance of the proposed algorithms that contribute to the familiarization of the learners in the field of WSNs.

이동 에드-혹 네트워크에서 조합 가중치 클러스터링 알고리즘에 의한 클러스터 그룹 멀티캐스트 (Cluster Group Multicast by Weighted Clustering Algorithm in Mobile Ad-hoc Networks)

  • 박양재;이정현
    • 전자공학회논문지CI
    • /
    • 제41권3호
    • /
    • pp.37-45
    • /
    • 2004
  • 본 논문에서는 이동 에드-혹 네트워크에서 조합가중치 클러스터링 알고리즘을 적용하여 강건하고 신뢰성 있는 클러스터 기반의 그룹 멀티캐스트 방식을 제안한다. 에드-혹 네트워크는 고정된 통신 하부 구조의 도움 없이 이동 단말기로만 구성된 무선 네트워크이다. 제한된 대역폭과 높은 이동성으로 인하여 에드-혹 네트워크에서의 라우팅 프로토콜은 강건하고, 간단하면서 에너지 소비를 최소화하여야 한다. WCGM(Weighted Cluster Group Multicast)방식은 조합 가중치 다중 클러스터 기반 구조를 이용하고 기존의 FGMP(Forwarding Group Multicast Protocol)방식의 장점인 제한적인 플러딩에 의한 데이터 전달방식은 유지하면서 클러스터 헤드 선출 시 조합가중치를 적용한다. 이것은 안정적이며 강건한 데이터 전달 구조를 가지기 때문에 데이터 전달 구조를 유지하기 위한 오버헤드(Overhead)와 데이터 전달을 위한 오버헤드를 모두 줄이는 효과를 시뮬레이션을 통하여 검증하였다.

Energy-Efficient Resource Allocation in Multi-User AF Two-Way Relay Channels

  • Kim, Seongjin;Yu, Heejung
    • Journal of Communications and Networks
    • /
    • 제18권4호
    • /
    • pp.629-638
    • /
    • 2016
  • In this paper, we investigate an energy-efficient resource allocation problem in a two-way relay (TWR) network consisting of multiple user pairs and an amplify-and-forward (AF) relay. As the users and relay have individual energy efficiencies (EE), we formulate a multi-objective optimization problem (MOOP). A single-objective optimization problem (SOOP) of the MOOP is introduced using a weighted-sum method, which achieves a single Pareto optimal point of the MOOP. To derive the algorithm for the SOOP, we propose a more tractable equivalent problem using the Karush-Kuhn-Tucker conditions of the SOOP, which guarantees convergence at the local optimal points. The proposed equivalent problem can be efficiently solved by the proposed iterative algorithm. Numerical results demonstrate the effectiveness of the proposed algorithm in achieving the optimal EE in multi-user AF TWR networks.