• Title/Summary/Keyword: Energy-protein Requirements

Search Result 121, Processing Time 0.04 seconds

Evaluation of Diet for Buffalo Dairy Cows Using the Cornell Net Carbohydrate and Protein System

  • Calabro, S.;Piccolo, V.;Infascelli, F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.10
    • /
    • pp.1475-1481
    • /
    • 2003
  • The aim of this paper was to use the Cornell Net Carbohydrate and Protein System (CNCPS), that reports diet energy and protein value and animal requirements, as net energy for lactation ($NE_1$) and metabolizable protein (MP) respectively, to evaluate some rations for lactating Italian Mediterranean buffaloes. The investigation was carried out on six farms in the province of Caserta (southern Italy), where the milk production was controlled four times monthly on 10 animals (changing every time) chosen at different lactation days (5 categories): <2 months (A), 2-4 months (B), 4-6 months (C), 6-8 months (D), >8 months (E). Milk fat and protein were determined. Diet $NE_1$ and MP were estimated with the CPM-Dairy program (1998) using diet component chemical characteristics; then energy and protein intakes were estimated. $NE_1$ and MP requirements were estimated with two methods: 1) using CPM-Dairy that considers produced milk, fat and protein content, lactation phase and body condition score as main factors; 2) by applying the theory that to produce 1 kg of energy corrected milk, the buffalo needs 3.56 MJ of $NE_1$ and the efficiency to convert the absorbed aminoacids into milk protein is lower than cow (CNCPS). As regards energy, with method 1 the requirements were satisfactory starting from category A (4 out of 6 farms) and category B (5/6 farms); however, a surplus resulted for category E (5/6 farms). With method 2 a deficit in category A (5/6 farms) and B (3/6 farms) was observed, while the energy requirements were satisfied for all categories except E, where on only one buffalo farm had a surplus of energy intake. As regards protein, with method 1 the requirements were substantially satisfied for all the categories except E (3/6 farms); with method 2 the MP trend was much less favourable than with method 1. Indeed, a protein deficit was observed for all animals in categories A and B (5/6 farms). Moreover, on one farm the protein intake never satisfied animal requirements. In our experimental conditions, the use of the CNCPS to characterise diets for lactating buffalo and to calculate their requirements led to satisfactory results. By contrast, we cannot say the same for method 2, which applies a lower use efficiency of NE and MP for lactation in buffalo compared to cow.

Nutritional Requirements and Management Strategies for Farmed Deer - Review -

  • Shin, H.T.;Hudson, R.J.;Gai, X.H.;Suttie, J.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.4
    • /
    • pp.561-573
    • /
    • 2000
  • Knowledge concerning the nutritional requirements and nutritional problems of fanned deer is limited. Nutritional recommendations must be based on data from domestic ruminants and fanned deer. An understanding of the biology and adaptative characteristics of wild deer is essential for sensible application of sheep and cattle nutritional principles. Nutritional requirements of deer are generally separated into five categories: energy, protein, minerals, vitamins and water. Research on deer nutrition has primarily focused on energy, protein and minerals (phosphorus and calcium). Changes in the nutritional requirements that occur with gestation, lactation, breeding and antler growth should be coordinated with seasonal changes in nutrient availability from forage plants. This paper describes aspects of current knowledge of energy, protein, minerals, vitamins and water requirements. Nutritional problems of. fanned deer are described with recommendations for prevention or control. A comparison of production efficiency of deer, lamb, beef cattle and dairy cattle is included.

Past and Present Definitions of the Energy and Protein Requirements of Ruminants

  • Corbett, J.L.;Freer, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.4
    • /
    • pp.609-624
    • /
    • 2003
  • The genesis of methods for defining the nutritional value of feeds and the nutrient requirements of animals, and their development in the late 19th and early 20th centuries in Europe and the USA are outlined. Current energy and protein feeding systems for ruminants are described. Particular reference is made to the Australian systems which are applicable to grazing animals as well as to those given prepared feeds, and enable the effective nutritional management of a imals at pasture by means of the decision support tool GrazFeed. The scheme for predicting intakes by cattle and sheep from pastures allows for the effects of selective grazing on the composition of the feed eaten, and for reduction in herbage intake when a supplementary feed is consumed. For herbage of any given concentration of metabolizable energy (ME) in the feed dry matter the changes with season of year in the net efficiency of use of the ME for growth and fattening and in the yield of microbial crude protein, g/MJ ME, which both vary with latitude, are defined. An equation to predict the energy requirements for maintenance (MEm) of both cattle and sheep includes predictions of the additional energy costs incurred by grazing compared with housed animals and the cost, if any, of cold stress. The equation allows for the change in MEm with feed intake. A flexible procedure predicts the composition of liveweight gain made by any given breed or sex of cattle and sheep at any stage of growth, and the variation with rate of gain. Protein requirements for maintenance, production including wool growth, and reproduction, are related to the quantities of microbial true protein and undegraded dietary protein truly digested in the small intestine.

A STUDY ON THE PROTEIN AND ENERGY REQUIREMENTS OF MUSCOVY DUCKLINGS

  • Ali, M.A.;Sarker, G.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.1
    • /
    • pp.69-73
    • /
    • 1992
  • Two experiments were conducted with one-day-old straight run Muscovy ducklings to determine their protein and energy requirements. In the 1st experiment, isoenergetic diets (2800 kcal ME/kg) with three dietary proteins, 18, 20 and 22% in the starter period (1-28 days) and 16, 18 and 20% in the grower and finisher period (29-84 days) were used to determine the optimum protein requirement. While, in the 2nd experiment, isonitrogenous diets (20%, C.P.) with three dietary energy, 2700, 2800 and 2900 kcal ME/kg in the starter period (1-28 days) and (18% C.P.) with 2800, 2900 and 3000 kcal ME/kg in the grower-finisher period (29-84 days) were used to determine the optimum energy requirement. It was observed that 20% C.P. in the starter period and 18% C.P. in the grower and finisher period was adequate for optimum performance, while, 2900 kal ME/kg was sufficient to meet the optimum energy requirement in both the starter, grower-finisher period as regards body weight, feed efficiency, protein efficiency and caloric efficiency are concerned.

Nutritional Status and Requirements of Protein and Energy in Female Korean College Students Maintaining Their Usual and Activity(2) : Nitrogen Intake and Balance (자유로운 식이와 활동을 유지하는 한국 여대생의 에너지와 단백질대사에 대한 연구(2) : 질소섭취와 평형)

  • 김주연
    • Journal of Nutrition and Health
    • /
    • v.28 no.4
    • /
    • pp.259-267
    • /
    • 1995
  • A study was conducted to investigate nitrogen balance and to estimate daily nitrogen requirement in 43 Korean female college students students maintaining their usual diet and activity levels. Nitrogen intake and excretion were measured in two separate peroids about one month apart, each period lasting for 3 days. Nitrogen intake was assessed by duplicate portion analysis of diet, and N excretion in faces and urine were measured during the study period. Mean daily nitrogen intake level was 129.3mg/kg B.W and the apparent digestibility of nitrogen was 76%. Mean daily urinary nitrogen excretion was 113.5mg/kg BW. 895 of total nitrogen intake. Mean daily nitrogen balance of subjects was -14.5mg/kg BW. Mean daily requirements of nitrogen for 0 balance, calculated by regression analysis of N balance and energy-adjusted N intake. were 1) 197.mg/kg B.W with the present energy intake level of the study subjects. 2) 157mg/kg B.W when energy intake is sufficient to maintain energy balance, and 30 130mg/kg B.W. when energy intake is Korean RDA level for moderate activity. When energy intake level is sufficient to meet their requirement, daily protein requirement for 0 balance is about 1.0g/kg B.W. The results of this study indicate that nitrogen intake level of young female college students is not sufficient to meet their requirements, and they should increase protein intake together with increase in energy intake.

  • PDF

Effect of Dietary Energy and Protein Contents on Buffalo Milk Yield and Quality during Advanced Lactation Period

  • Bovera, F.;Calabro, S.;Cutrignelli, M.I.;Di Lella, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.5
    • /
    • pp.675-681
    • /
    • 2002
  • Among Italian buffalo farmers, it is widely held that administering diets with high energy and protein concentrations is an effective way to increase milk production. In order to assess the validity of this opinion, we verified milk yield and physico-chemical characteristics from buffaloes that, from the $5^{th}$ month of lactation, were fed two total mixed rations (TMRs) which, given the same intake, should have led to satisfaction of protein requirements though with a slight energy deficit (diet A) or excessive amounts of energy and protein (diet B). Estimate of the energy and protein value of the diets and that of the corresponding requirements was carried out both by using two software programs derived from the Cornell Net Carbohydrate and Protein System (1992), and with the method set up by INRA researchers (1988). The results obtained show that the two diets administered did not result in significant changes to the quantity of milk produced. However, with Diet B the protein concentration in the milk was significantly (p<0.01) higher, although this was partly offset by the higher concentration (p<0.05) of non-protein nitrogen (NNP). The Group B buffaloes also showed significantly higher blood urea levels (p<0.01), with concentrations exceeding those considered physiological for lactating buffaloes. Finally, while administering Diet A the Body Condition Score (BCS) was close to 6.5 (Wagner et al., 1988), whereas in buffaloes which used Diet B it sometimes increased by over 0.5 points. As regards which of the two methods compared is more suitable for expressing dietary energy and protein value and corresponding requirements, we feel that due to the high variability in the Italian Mediterranean buffalo's milk production aptitude, it would be premature to express a judgement on methods which rest on a common scientific base and do not differ substantially.

ENERGY AND PROTEIN REQUIREMENTS OF KHAKI CAMPBELL × THAI NATIVE LAYING DUCKS

  • Thongwittaya, N.;Tasaki, I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.2
    • /
    • pp.365-368
    • /
    • 1992
  • The experiment was carried out to estimate the energy and protein requirements of Khaki Campbell $\times$ Thai Native laying ducks. To estimate the energy requirement, 5 experimental diets were formulated at levels of 2.70, 2.75, 2.80, 2.85 and 2.90 Mcal ME/kg. These diets were equal in ME/CP ratio (170/l). A total of 150 18-week old laying ducks were assigned to 5 energy level treatments, each comprising 3 replicates of 10 birds each, and they were fed the diets for 18 weeks. To estimate the protein requirement, 90 18-week old laying ducks were divided into 9 groups of 10 birds each, and they were assigned to 3 protein level treatments, each comprising 3 replicates. The levels of protein in the diets were 13.5%, 15.0% and 16.5%, and all diets were isocaloric (2.8 Mcal ME/kg). As a result, the 16.5% protein diet gave significantly better egg production than the 13.5% and 15.0% protein diets, however, no significant difference in egg production was found among the energy levels. Feed cost to produce 1k eggs was lower in the 2.70 Mcal and 16.5%protein diets than in the higher ME and lower protein diets.

Studies on Protein Requirements of Korean - 3. Requirement and Utilization of Protein of Korean Mixed Diet on Korean Young Female Adult Maintained at a level of Energy Intake of 45kcal/Kg/day - (한국인(韓國人)의 단백질소요량(蛋白質所要量)에 대(對)한 연구(硏究) - 제(第)3 보(報) 한국혼합식사섭취(韓國混合食事攝取)때의 단백질소요량(蛋白質所要量)에 대(對)하여 -)

  • Lim, Hyun-Muck;Ju, Jin-Soon
    • Journal of Nutrition and Health
    • /
    • v.18 no.2
    • /
    • pp.98-114
    • /
    • 1985
  • In the previous studies, one of our author had observed the obligatory nitrogen losses through urine and feces in young Korean male adults, and utilization of whole egg protein in Korean young adults with ordinary intake of energy as a basic study for estimating protein requirements of Korean. This study has tried to determine the protein requirement and utilization when subjects ate the Korean mixed diet at the energy level of 45 kcal per Kg body weight per day. Six healthy Korean young female adults, college students, aged $20{\sim}25$ years old, and $45{\sim}61Kg$ of body weight participated as the study subjects. They were given isocaloric diets with four different protein levels for five days each successively. These diets contained protein levels of 0.45, 0.60, 0.75 and 0.90g per Kg of body weight per day, respectively. It was attempted to observe energy and protein intake, urinary and fecal nitrogen losses, true digestibility of protein, net protein utilization of protein in the body over last two days of period of eating each diet and nitrogen balances were calculated. The body weight change and hematological observation were also performed. The results obtained were summarized as follows ; 1) True digestibility of protein of Korean mixed diets ranged from 83.1% to 86.5% and the average of which was $84.7{\pm}1.7%$. 2) Net protein utilization rate of Korean mixed diets was range of 49% to 55% and the average of which was $52{\pm}3%.$ 3) The body weight of subjects were slightly increased and the values of hemoglobin and hematocrit of the blood were also little increased during the experimental periods of twenty days. 4) Protein requirements of Korean mixed diet with the energy level of 45 kcal/Kg body weight per day of Korean young female adults were estimated as 1.00g/Kg/day on this experimental condition.

  • PDF

ENERGY REQUIREMENTS OF GROWING SAHIWAL × FRIESIAN HEIFERS IN MALAYSIA

  • Liang, J.B.;Samiyah, M.N.;Azizan, A.R.;Dollah, M.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.1
    • /
    • pp.75-79
    • /
    • 1992
  • Fourteen Sahiwal ${\times}$ Friesian crossbred heifers were used in a 10-wk feeding trial to determine maintenance energy requirements and efficiency of gain. The heifers were individually fed with a diet consisting of 30% dry grass and 70% concentrates at either 110, 140 or 180% of the anticipated maintenance requirement ($494kJ\;ME/kg^{0.75}/day$). Liveweight of individual heifers was measured weekly to calculate diet requirements and average daily gain (ADG). Diet digestibility was determined for all heifers to determine ME intake. Retained energy (RE) of individual heifers was determined from changes in total body fat and protein using a TOH isotope dilution procedure and, assuming calorific values of 39.3 and 23.6 kJ/g for fat and protein respectively. The estimated ME for maintenance was 433 and $470kJ/kg^{0.75}/day$ by liveweight (ADG) equilibrium and energy (RE) equilibrium analysis respectively. ME requirement for one g of liveight gain was 28 kJ.

Nutrient requirements and evaluation of equations to predict chemical body composition of dairy crossbred steers

  • Silva, Flavia Adriane de Sales;Valadares Filho, Sebastiao de Campos;Silva, Luiz Fernando Costa e;Fernandes, Jaqueline Goncalves;Lage, Bruno Correa;Chizzotti, Mario Luiz;Felix, Tara Louise
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.558-566
    • /
    • 2021
  • Objective: Objectives were to estimate energy and protein requirements of dairy crossbred steers, as well as to evaluate equations previously described in the literature (HH46 and CS16) to predict the carcass and empty body chemical composition of crossbred dairy cattle. Methods: Thirty-three Holstein×Zebu steers, aged 19±1 months old, with an initial shrunk body weight (BW) of 324±7.7 kg, were randomly divided into three groups: reference group (n = 5), maintenance level (1.17% BW; n = 4), and the remaining 24 steers were randomly allocated to 1 of 4 treatments. Treatments were: intake restricted to 85% of ad libitum feed intake for either 0, 28, 42, or 84 d of an 84-d finishing period. Results: The net energy and the metabolizable protein requirements for maintenance were 0.083 Mcal/EBW0.75/d and 4.40 g/EBW0.75, respectively. The net energy (NEG) and protein (NPG) requirements for growth can be estimated with the following equations: NEG (Mcal/kg EBG) = $0.2973_{({\pm}0.1212)}{\times}EBW^{0.4336_{({\pm}0.1002)}$ and NPG (g/d) = 183.6(±22.5333)×EBG-2.0693(±4.7254)×RE, where EBW, empty BW; EBG, empty body gain; and RE, retained energy. Crude protein (CP) and ether extract (EE) chemical contents in carcass, and all the chemical components in the empty body were precisely and accurately estimated by CS16 equations. However, water content in carcass was better predicted by HH46 equation. Conclusion: The equations proposed in this study can be used for estimating the energy and protein requirements of crossbred dairy steers. The CS16 equations were the best estimator for CP and EE chemical contents in carcass, and all chemical components in the empty body of crossbred dairy steers, whereas water in carcass was better estimated using the HH46 equations.