• Title/Summary/Keyword: Energy-efficient networks

Search Result 943, Processing Time 0.027 seconds

A Comparative Analysis on Performance of Wireless Sensor Networks Routing Protocols

  • KRISHNA, KONDA. HARI;NAGPAL, TAPSI;BABU, Y. SURESH
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.240-244
    • /
    • 2022
  • The common goals of designing a routing algorithm are not only to reduce control packet overhead, maximize throughput and minimize the end-to-end delay, but also take into consideration the energy consumption. Scalability is an important factor in designing an efficient routing protocol for wireless sensor networks (WSN's). Three metrics (power consumption, time of transmission and packet loss rate) are used in order to compare three routing protocols which are AODV, DSDV and LEACH.

Multihop Routing based on the Topology Matrix in Cluster Sensor Networks (클라스터 센서 네트워크에서 토폴로지 행렬 기반 멀티홉 라우팅)

  • Wu, Mary;Park, Ho-Hwan;Kim, Chong-Gun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • Sensors have limited resources in sensor networks, so efficient use of energy is important. Representative clustering methods, LEACH, LEACHC, TEEN generally use direct transmission methods from cluster headers to a sink node to pass collected data. If clusters are located at a long distance from the sink node, the cluster headers exhaust a lot of energy in order to transfer the data. As a consequence, the life of sensors is shorten and re-clustering is needed. In the process of clustering, sensor nodes consume some energy and the energy depletion of the cluster headers meet another energy exhaustion. A method of transferring data from cluster headers to the sink using neighbor clusters is needed for saving energy. In this paper, we propose a novel routing method using a multi-hop transmission method in cluster sensor networks. This method uses the topology matrix which presents cluster topology. One-hop routing and two-hop routing are proposed in order to increase the energy efficiency.

A Study on Efficient Routing Method with Location-based Clustering in Wireless Sensor Networks (무선센서네트워크에서의 위치기반 클러스터 구성을 통한 효율적인 라우팅 방안 연구)

  • Lim, Naeun;Joung, Jinoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.103-108
    • /
    • 2015
  • Maintaining efficient energy consumption and elongating network lifetime are the key issues in wireless sensor networks. Existing routing protocols usually select the cluster heads based on the proximity to the sensor nodes. In this case the cluster heads can be placed farther to the base station, than the distance between the sensor nodes and the base station, which yields inefficient energy consumption. In this work we propose a novel algorithm that select the nodes in a cluster and the cluster heads based on the locations of related nodes. We verify that the proposed algorithm gives better performance in terms of network life time than existing solutions.

Clustering Algorithm Considering Sensor Node Distribution in Wireless Sensor Networks

  • Yu, Boseon;Choi, Wonik;Lee, Taikjin;Kim, Hyunduk
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.926-940
    • /
    • 2018
  • In clustering-based approaches, cluster heads closer to the sink are usually burdened with much more relay traffic and thus, tend to die early. To address this problem, distance-aware clustering approaches, such as energy-efficient unequal clustering (EEUC), that adjust the cluster size according to the distance between the sink and each cluster head have been proposed. However, the network lifetime of such approaches is highly dependent on the distribution of the sensor nodes, because, in randomly distributed sensor networks, the approaches do not guarantee that the cluster energy consumption will be proportional to the cluster size. To address this problem, we propose a novel approach called CACD (Clustering Algorithm Considering node Distribution), which is not only distance-aware but also node density-aware approach. In CACD, clusters are allowed to have limited member nodes, which are determined by the distance between the sink and the cluster head. Simulation results show that CACD is 20%-50% more energy-efficient than previous work under various operational conditions considering the network lifetime.

Energy-Efficient Traffic Grooming in Bandwidth Constrained IP over WDM Networks

  • Chen, Bin;Yang, Zijian;Lin, Rongping;Dai, Mingjun;Lin, Xiaohui;Su, Gongchao;Wang, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2711-2733
    • /
    • 2018
  • Minimizing power consumption in bandwidth limited optical traffic grooming networks is presented as a two-objective optimization problem. Since the main objective is to route a connection, the network throughput is maximized first, and then the minimum power consumption solution is found for this maximized throughput. Both transparent IP over WDM (Tp-IPoWDM) and translucent IP over WDM (Tl-IPoWDM) network may be applied to examine such bi-objective algorithms. Simulations show that the bi-objective algorithms are more energy-efficient than the single objective algorithms where only the throughput is optimized. For a Tp-IPoWDM network, both link based ILP (LB-ILP) and path based ILP (PB-ILP) methods are formulated and solved. Simulation results show that PB-ILP can save more power than LB-ILP because PB-ILP has more path selections when lightpath lengths are limited. For a Tl-IPoWDM network, only PB-ILP is formulated and we show that the Tl-IPoWDM network consumes less energy than the Tp-IPoWDM network, especially under a sparse network topology. For both kinds of networks, it is shown that network energy efficiency can be improved by over-provisioning wavelengths, which gives the network more path choices.

Dynamic Timeout Scheduling for Energy-Efficient Data Aggregation in Wireless Sensor Networks based on IEEE 802.15.4 (IEEE 802.15.4기반 무선센서네트워크에서 에너지 효율적인 데이터 병합을 위한 동적 타임아웃 스케줄링)

  • Baek, Jang-Woon;Nam, Young-Jin;Seo, Dae-Wha
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.933-937
    • /
    • 2009
  • This paper proposes a dynamic timeout scheduling for energy efficient and accurate aggregation by analyzing the single hop delay in wireless sensor networks based on IEEE 802.15.4. The proposed scheme dynamically configures the timeout value depending on both the number of nodes sharing a channel and the type of wireless media, with considering the results of delay analysis of the single hop delay. The timeout of proposed scheme is much smaller than the maximum single hop delay which is used as the timeout of traditional data aggregation schemes. Therefore the proposed scheme considerably reduces the energy consumption of idle monitoring for waiting messages. Also, the proposed scheme maintains the data accuracy by guaranteeing the reception ratio required by the sensor network applications. Extensive simulation has revealed that proposed scheme enhances energy consumption by 30% with maintaining data accuracy, as compared with the TAG data aggregation.

An Efficient Data Distribution Scheme for Maximizing the Amount of Data Stored in Solar-powered Sensor Networks (태양 에너지 기반 센서 네트워크에서 데이터 저장량을 최대화하기 위한 효율적인 데이터 분배 기법)

  • Noh, Dong-Kun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.1
    • /
    • pp.55-59
    • /
    • 2010
  • Most applications for solar-powered wireless sensor networks are usually deployed in remote areas without a continuous connection to the external networks and a regular maintenance by an administrator. In this case, sensory data has to be stored in the network as much as possible until it is uploaded by the data mule. For this purpose, a balanced data distribution over the network should be performed, and this can be achieved efficiently by taking the amount of available energy and storage into account, in the system layer of each node. In this paper, we introduce a simple but very efficient data distribution algorithm, by which each solar-powered node utilizes the harvested energy and the storage space maximally. This scheme running on each node determines the amount of energy which can be used for a data distribution as well as the amount of data which should be transferred to each neighbor, by using the local information of energy and storage status.

An Energy-Efficient Access Control Scheme forWireless Sensor Networks based on Elliptic Curve Cryptography

  • Le, Xuan Hung;Lee, Sung-Young;Butun, Ismail;Khalid, Murad;Sankar, Ravi;Kim, Miso Hyoung-Il;Han, Man-Hyung;Lee, Young-Koo;Lee, Hee-Jo
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.599-606
    • /
    • 2009
  • For many mission-critical related wireless sensor network applications such as military and homeland security, user's access restriction is necessary to be enforced by access control mechanisms for different access rights. Public key-based access control schemes are more attractive than symmetric-key based approaches due to high scalability, low memory requirement, easy key-addition/revocation for a new node, and no key predistribution requirement. Although Wang et al. recently introduced a promising access control scheme based on elliptic curve cryptography (ECC), it is still burdensome for sensors and has several security limitations (it does not provide mutual authentication and is strictly vulnerable to denial-of-service (DoS) attacks). This paper presents an energy-efficient access control scheme based on ECC to overcome these problems and more importantly to provide dominant energy-efficiency. Through analysis and simulation based evaluations, we show that the proposed scheme overcomes the security problems and has far better energy-efficiency compared to current scheme proposed byWang et al.

Energy-Efficient Base Station Operation With Base Station Sharing in Wireless Cellular Networks (기지국 공유가 가능한 셀룰러 네트워크에서 에너지 효율화를 위한 기지국 운영 방안)

  • Oh, Eunsung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.3-8
    • /
    • 2013
  • In this paper, we present an energy-efficient base station operation with base station sharing in wireless cellular networks. Firstly, cost functions are modeled related with the amount of energy usage and traffic load. We use game theory and formulate an energy bill game, where the players are the service operators which are operating base stations and their strategies are the bill of their base station energy consumption and hand-over traffic load to the others service operators. We show that the global optimal performance in terms of minimizing the energy costs is achieved at the Nash equilibrium of the formulated energy bill game. Simulation results confirm that the proposed approach can reduce the energy bill of the service operator, and show the relationship between the energy cost saving and various parameters.

A Time Tree Scheduling Scheme for Energy Efficiency and Collision Avoidance in Sensor Networks (센서 네트워크에서 에너지 효율과 충돌 회피를 위한 타임 트리 스케줄링)

  • Lee, Kil-Hung
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.7
    • /
    • pp.962-970
    • /
    • 2009
  • This paper presents a data gathering and scheduling scheme for wireless sensor networks. We use a data gathering tree for sending the data from the sensor node to the base station. For an energy efficient operation of the sensor networks in a distributed manner, a time tree is built in order to reduce the collision probability and to minimize the total energy required to send data to the base station. A time tree is a data gathering tree where the base station is the root and each sensor node is either a relaying or a leaf node of the tree. Each tree operates in a different time schedule with possible different activation rate. Through the simulation, we found that the proposed scheme that uses time trees shows better characteristics in energy and data arrival rate when compared with other schemes such as SMAC and DMAC.

  • PDF