• Title/Summary/Keyword: Energy-efficient networks

Search Result 940, Processing Time 0.035 seconds

A High Efficient Piezoelectric Windmill using Magnetic Force for Low Wind Speed in Wireless Sensor Networks

  • Yang, Chan Ho;Song, Yewon;Jhun, Jeongpil;Hwang, Won Seop;Hong, Seong Do;Woo, Sang Bum;Sung, Tae Hyun;Jeong, Sin Woo;Yoo, Hong Hee
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1889-1894
    • /
    • 2018
  • An innovative small-scale piezoelectric energy harvester has been proposed to gather wind energy. A conventional horizontal-axis wind power generation has a low generating efficiency at low wind speed. To overcome this weakness, we designed a piezoelectric windmill optimized at low-speed wind. A piezoelectric device having high energy conversion efficiency is used in a small windmill. The maximum output power of the windmill was about 3.14 mW when wind speed was 1.94 m/s. Finally, the output power and the efficiency of the system were compared with a conventional wind power system. This work will be beneficial for the piezoelectric energy harvesting technology to be applied to the real world such as wireless sensor networks (WSN).

A Hybrid Adaptive Security Framework for IEEE 802.15.4-based Wireless Sensor Networks

  • Shon, Tae-Shik;Park, Yong-Suk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.6
    • /
    • pp.597-611
    • /
    • 2009
  • With the advent of ubiquitous computing society, many advanced technologies have enabled wireless sensor networks which consist of small sensor nodes. However, the sensor nodes have limited computing resources such as small size memory, low battery life, short transmission range, and low computational capabilities. Thus, decreasing energy consumption is one of the most significant issues in wireless sensor networks. In addition, numerous applications for wireless sensor networks are recently spreading to various fields (health-care, surveillance, location tracking, unmanned monitoring, nuclear reactor control, crop harvesting control, u-city, building automation etc.). For many of them, supporting security functionalities is an indispensable feature. Especially in case wireless sensor networks should provide a sufficient variety of security functions, sensor nodes are required to have more powerful performance and more energy demanding features. In other words, simultaneously providing security features and saving energy faces a trade-off problem. This paper presents a novel energy-efficient security architecture in an IEEE 802.15.4-based wireless sensor network called the Hybrid Adaptive Security (HAS) framework in order to resolve the trade off issue between security and energy. Moreover, we present a performance analysis based on the experimental results and a real implementation model in order to verify the proposed approach.

An UDT(Up-Down Tree) Routing Algorithm for Energy-Efficient Topology Construction in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적인 토폴로지 구성을 위한 Up-Down Tree 라우팅 알고리즘)

  • Roh, Tae-Ho;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.5
    • /
    • pp.360-369
    • /
    • 2007
  • Since wireless sensor networks consist of nodes with the constrained battery, it is important to construct the topology performing energy-efficient routing while maximizing the whole network lifetime. Previous works related to this do not take into consideration the specific communication pattern in wireless sensor networks. In this paper, we propose a novel routing algorithm, called Up-Down Tree(UDT), which first constructs the tree topology based on distance and then adjusts the transmission range determined by the two different phases, tree setup and data gathering, to adapt the specific communication pattern in wireless sensor networks. Therefore, the UDT can improve energy efficiency, maximize the network lifetime, and block network partition Simulation results show that the UDT has the improved energy efficiency by constructing the optimal topology.

A Mobile-Sink based Energy-efficient Clustering Scheme in Mobile Wireless Sensor Networks (모바일 센서 네트워크에서 모바일 싱크 기반 에너지 효율적인 클러스터링 기법)

  • Kim, Jin-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.1-9
    • /
    • 2017
  • Recently, the active research into wireless sensor networks has led to the development of sensor nodes with improved performance, including their mobility and location awareness. One of the most important goals of such sensor networks is to transmit the data generated by mobile sensors nodes. Since these sensor nodes move in the mobile wireless sensor networks (MWSNs), the energy consumption required for them to transmit the sensed data to the fixed sink is increased. In order to solve this problem, the use of mobile sinks to collect the data while moving inside the network is studied herein. The important issues are the mobility and energy consumption in MWSNs. Because of the sensor nodes' limited energy, their energy consumption for data transmission affects the lifetime of the network. In this paper, a mobile-sink based energy-efficient clustering scheme is proposed for use in mobile wireless sensor networks (MECMs). The proposed scheme improves the energy efficiency when selecting a new cluster head according to the mobility of the mobile sensor nodes. In order to take into consideration the mobility problem, this method divides the entire network into several cluster groups based on mobile sinks, thereby decreasing the overall energy consumption. Through both analysis and simulation, it was shown that the proposed MECM is better than previous clustering methods in mobile sensor networks from the viewpoint of the network energy efficiency.

An Energy Efficient Hybrid Routing Protocol Based on LEACH and PEGASIS (LEACH와 PEGASIS 기법에 기반한 에너지 효율적 하이브리드 라우팅 규약)

  • Lee, Young-Han;Lee, Hyun-Jun;Lee, Kyung-Oh
    • The KIPS Transactions:PartC
    • /
    • v.16C no.5
    • /
    • pp.629-636
    • /
    • 2009
  • Since all sensor nodes in wireless sensor networks work by their own embedded batteries, if a node runs out of its battery, the sensor network can not operate normally. In this situation we should employ the routing protocols which can consume the energy of nodes efficiently. Many protocols for energy efficient routing in sensor networks have been suggested but LEACH and PEGASIS are most well known protocols. However LEACH consumes energy heavily in the head nodes and the head nodes tend to die early and PEGASIS - which is known as a better energy efficient protocol - has a long transfer time from a source node to sink node and the nodes close to the sink node expend energy sharply since it makes a long hop of data forwarding. We proposed a new hybrid protocol of LEACH and PEGASIS, which uses the clustering mechanism of LEACH and the chaining mechanism of PEGASIS and it makes the life time of sensor networks longer than other protocols and we improved the performance 33% and 18% higher than LEACH-C and PEGASIS respectively.

An Energy Efficient Routing Protocol using Transmission Range and Direction for Sensor Networks (센서 네트워크에서 전송범위와 전송방향을 이용한 에너지 효율적인 라우팅 프로토콜)

  • Lee, Hyun-Jun;Lee, Young-Han;Lee, Kyung-Oh
    • The KIPS Transactions:PartC
    • /
    • v.17C no.1
    • /
    • pp.81-88
    • /
    • 2010
  • Sensors in sensor networks are operated by their embedded batteries and they can not work any more if the batteries run out. The data collected by sensors should be transferred to a sink node through the efficient routes. Many energy efficient routing algorithms were proposed. However, the previous algorithms consume more energy since they did not consider the transmission range and direction. In this paper we propose an algorithm TDRP(Transmission range and Direction Routing Protocol) that considers the transmission range and direction for the efficient data transmission. Since TDRP does not produce clusters or grids but four quadrants and send data to the nodes in one quadrant in the direction of the sink node, it has less network overhead. Furthermore since the proposed algorithm sends data to the smaller number of nodes compared to the previous algorithms, the energy efficiency is better than other algorithms in communication node fields that are located in packet transmit directions.

Energy-Efficient Storage with Flash Device in Wireless Sensor Networks (무선 센서 네트워크에서 플래시 장치를 활용한 에너지 효율적 저장)

  • Park, Jung Kyu;Kim, Jaeho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.975-981
    • /
    • 2017
  • In this paper, we propose a method for efficient use of energy when using flash device in WSN environment. Typical Flash devices have a drawback to be an energy efficient storage media in the energy-constrained WSNs due to the high standby energy. An energy efficient approach to deploy Flash devices into WSNs is simply turning the Flash device off whenever idle. In this regard, we make the simple but ideal approach realistic by removing these two obstacles by exploiting nonvolatile RAM (NVRAM), which is an emerging memory technology that provides both non-volatility and byte-addressability. Specifically, we make use of NVRAM as an extension of metadata storage to remove the FTL metadata scanning process that mainly incurs the two obstacles. Through the implementation and evaluation in a real system environment, we verify that significant energy savings without sacrificing I/O performance are feasible in WSNs by turning off the Flash device exploiting NVRAM whenever it becomes idle. Experimental results show that the proposed method consumes only about 1.087% energy compared to the conventional storage device.

Distance-based Routing Mechanism in Mobile Sensor Networks (모바일 센서 네트워크에서 거리 기반 경로배정 메커니즘)

  • Kim, Jun Hyoung;Park, Jung Hyeon;Lee, Sung Keun;Koh, Jin Gwang
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.55-60
    • /
    • 2016
  • Mobility of the sensor networks proposed a new way to the efficient design of sensor networks and improvement of network system performance. Mobility results in a number of functional changes in the MAC protocol and routing protocol. Especially, the mobility of the nodes may occur the increase of the overhead of transmission or disconnection of the link. Therefore, the study of the energy efficient transmission is very important in mobile sensor networks. This paper proposed adaptive transmission mechanism on the distance-based power control. The proposed mechanism was analyzed better than conventional method in the average energy consumption and network life by simulation results.

Performance Analysis of Energy-Efficient Secure Transmission for Wireless Powered Cooperative Networks with Imperfect CSI

  • Yajun Zhang;Jun Wu;Bing Wang;Hongkai Wang;Xiaohui Shang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2399-2418
    • /
    • 2023
  • The paper focuses on investigating secure transmission in wireless powered communication networks (WPCN) that involve multiple energy-constrained relays and one energy-constrained source. The energy is harvested from a power beacon (PB) while operating in the presence of a passive eavesdropper. The study primarily aims to achieve energy-efficient secure communications by examining the impact of channel estimation on the secrecy performance of WPCN under both perfect and imperfect CSI scenarios. To obtain practical insights on improving security and energy efficiency, we propose closed-form expressions for secrecy outage probability (SOP) under the linear energy harvesting (LEH) model of WPCN. Furthermore, we suggest a search method to optimize the secure energy efficiency (SEE) with limited power from PB. The research emphasizes the significance of channel estimation in maintaining the desired performance levels in WPCN in real-world applications. The theoretical results are validated through simulations to ensure their accuracy and reliability.

An Energy Efficient Data Delivery Scheme based on Cross-Layer Design in Wireless Sensor Networks (무선 센서네트워크에서 교차계층 설계 기반의 에너지 효율적인 데이터 전송 기법)

  • Shin, Jong-Whoi;Kim, Jae-Hyun;Kim, Seog-Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.4
    • /
    • pp.177-184
    • /
    • 2008
  • The design goal of protocols in wireless sensor networks (WSN) is mainly energy efficiency because of their stringent resource and energy constraints. In this paper, we propose a simple cross-layered protocol for WSNs, so called EATD(Energy-Aware Tree based Delivery scheme). EATD is a tree-based energy aware data delivery algorithm by using a SYNC packet with link and node cost to maximize the network lifetime. Our simulation results show significant improvements compared with existing schemes in terms of energy efficiency and delay.

  • PDF