• 제목/요약/키워드: Energy-IT

Search Result 28,481, Processing Time 0.057 seconds

Field Test of Energy Storage System on Urban Transit System (도시철도용 에너지저장시스템 에너지 절감을 현장시험)

  • Lee, Han-Min;Kim, Gil-Dong;An, Cheon-Heon;Kim, Young-Gyu;Kim, Tae-Seok
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1461-1467
    • /
    • 2009
  • The electric railway is a clean and energy saving system, because it requires relatively less energy than automobiles by transporting the same passengers or goods. Six thousands of vehicles are operated on Korean urban transit system. This system is 95% of regeneration system. Especially, the VVVF-Inverter vehicle has a merit of the highest regeneration rate. Energy consumption is 90% for traction and 10% for auxiliary supply. Braking energy is about 40% of energy consumption. Up to 40% of the tractive power of vehicles capable of returning energy to the power supply can be regenerated during braking and that this energy can be used to feed vehicles which are accelerating at the same time. The energy generated by braking vehicle would simply be converted into waste heat by its braking resistors if no other vehicle is accelerating at exactly the same time. Such synchronized braking and accelerating can not be coordinated, the ESS(energy storage system) stores the energy generated during braking and discharges it again when a vehicle accelerates. This paper presents field tests about the energy saving rate of the developed ESS. when the ESS is on/off, energy saving rate of the ESS is tested. The verification test in the field focused on energy saving.

  • PDF

A Study on the Manufacture of Bio-SRF from the Food Waste by Hydrothermal Carbonization (HTC) Process (열수가압탄화 공정에 의한 음식물폐기물로부터의 Bio Solid Reuse Fuel (Bio-SRF) 연료제조에 관한 실증연구)

  • HAN, DANBEE;YEOM, KYUIN;PARK, SUNGKYU;CHO, OOKSANG;BAEK, YOUNGSOON
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.4
    • /
    • pp.426-432
    • /
    • 2017
  • Hydrothermal carbonization (HTC) is an effective and environment friendly technique; it possesses extensive potential towards producing high-energy density solid fuels. it is a carbonization method of thermochemical process at a relatively low temperature ($180-250^{\circ}C$). It is reacted by water containing raw material. However, the production and quality of solid fuels from HTC depends upon several parameters; temperature, residence time, and pressure. This study investigates the influence of operating parameters on solid fuel production during HTC. Especially, when food waste was reacted for 2 hours, 4 hours, and 8 hours at $200^{\circ}C$ and 2.0-2.5 MPa, Data including heating value, proximate analysis and water content was consequently collected and analyzed. It was found that reaction temperature, residence time are the primary factors that influence the HTC process.

Tracking System for Optimum Solar Power System of Widely Separated Cave (고립원격지 동굴 전원용 태양광발전 광 추적 시스템)

  • Suh, Oh-Ji;Soh, Dea-Wha
    • Journal of the Speleological Society of Korea
    • /
    • no.89
    • /
    • pp.27-33
    • /
    • 2008
  • Solar energy is most green and clean, unlimited and sustainable energy source on the earth. It is almost 97% of imported consumer energy in Korea. Because of resource poor nation, it is necessary to do their best to make alternative energy to allot their deficiency of the matter in hand of energy resources of petroleum. In a point of view of this problems, the natural solar energy should be improved by any methods as much, possible as we need. Photovoltaic generation with solar tracking system for obtaining optimal power is one of most benefit equipment to improve power of solar-cell panel producing clean electric power efficiently. Solar tracker is a device for orienting a solar photovoltaic panel toward the sun perpendicularly to sunlight, especially in widely separated place. For this reason, we are very interested in developing the equipment system of tracker, specially in solar cell applications, obtaining a high degree of accuracy to ensure that the optimal sunlight could be directed precisely against to the powered device. As a result, it was obtained of 12.46 volts at 90$^\circ$toward solar panel and 9.44 volts at 45$^\circ$, furthermore, improved efficiency more than 30% of average output voltage between tracker system (12.41V) and fixed system (8.55V), respectively. It is also very useful for optimum power system of widely separated cave.

Elastic Work Factor of CLS Specimen and Determination of $G_c$ for Graphite/Peek Composites by Using the Elastic Work Factor (CLS 시편의 탄성일인자 유도 및 이를 적용한 열가소성 Graphite/Peek 복합재의 파괴인성 $G_c$ 측정)

  • Lee, Gyeong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2792-2799
    • /
    • 1996
  • It was shown in the previous study that the numerically derived elastic work factor for CLS specimen was independent of fiber direction for a unidirectional case. Also, it was proposed the elastic work factor could be used to determine energy release rate from a single test record. In the present study, elastic work factor was derived from a simple beam theory to investigate its dependence on material property and geometric condition. Also, the elastic work factor of CLS specimen was applied experimentally to determine critical energy release rate in order to prove its validity determining critical energy release rate from a single specimen. For this purpose, critical energy release rate determined using the elastic work factor was compared with that determined by the compliance method. The results showed that while elastic work factor is affected by $t_2/t_1$ and $L_2/L_1$ it is independent of fiber angle for a unidirectional case. It was also found that critical energy release rates determined by both methods are comparable each other, thus elastic work factor approach can be used to determine energy release rate from a single test specimen.

A Brief Scrutiny of Malawi's Policy on Nuclear Power

  • Katengeza, Estiner Walusungu
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.4
    • /
    • pp.147-153
    • /
    • 2020
  • Background: Malawi's 2018 National Energy Policy includes nuclear power as an energy option with an operational 100 MW targeted for 2035. Materials and Methods: This paper challenges the scope of the policy on nuclear power by reviewing its implementation strategy and comparing it to: the strategy established for coal in the same policy; some experiences from other countries; and documents by the International Atomic Energy Agency (IAEA) relating to establishing a national position on nuclear power and infrastructural requirements for a nuclear power program. Results and Discussion: It is found that the pro-nuclear position is uninformed, and targets are unrealistic owing to a lack of understanding of nature of nuclear power including the requirements for safety, security and safeguards, and nuclear infrastructure. It is apparent that neither consultation nor a proper analysis were comprehensively conducted for nuclear. Though the national energy policy suggests a national position for nuclear energy, the content does not demonstrate that the position was arrived at knowledgeably. Conclusion: Thus, nuclear power may presently be viewed as a potential energy option that is yet to be seriously considered. It is important to build an appropriate level of literacy on nuclear science and technology for policy makers, key stakeholders, and the public to be better positioned for strategizing on nuclear power.

Development of Korean Green Business/IT Strategies Based on Priority Analysis (한국의 그린 비즈니스/IT 실태분석을 통한 추진전략 우선순위 도출에 관한 연구)

  • Kim, Jae-Kyeong;Choi, Ju-Choel;Choi, Il-Young
    • Asia pacific journal of information systems
    • /
    • v.20 no.3
    • /
    • pp.191-204
    • /
    • 2010
  • Recently, the CO2 emission and energy consumption have become critical global issues to decide the future of nations. Especially, the spread of IT products and the increased use of internet and web applications result in the energy consumption and CO2 emission of IT industry though information technologies drive global economic growth. EU, the United States, Japan and other developed countries are using IT related environmental regulations such as WEEE(Waste Electrical and Electronic Equipment), RoHS(Restriction of the use of Certain Hazardous Substance), REACH(Registration, Evaluation, Authorization and Restriction of CHemicals) and EuP(Energy using Product), and have established systematic green business/IT strategies to enhance the competitiveness of IT industry. For example, the Japan government proposed the "Green IT initiative" for being compatible with economic growth and environmental protection. Not only energy saving technologies but energy saving systems have been developed for accomplishing sustainable development. Korea's CO2 emission and energy consumption continuously have grown at comparatively high rates. They are related to its industrial structure depending on high energy-consuming industries such as iron and steel Industry, automotive industry, shipbuilding industry, semiconductor industry, and so on. In particular, export proportion of IT manufacturing is quite high in Korea. For example, the global market share of the semiconductor such as DRAM was about 80% in 2008. Accordingly, Korea needs to establish a systematic strategy to respond to the global environmental regulations and to maintain competitiveness in the IT industry. However, green competitiveness of Korea ranked 11th among 15 major countries and R&D budget for green technology is not large enough to develop energy-saving technologies for infrastructure and value chain of low-carbon society though that grows at high rates. Moreover, there are no concrete action plans in Korea. This research aims to deduce the priorities of the Korean green business/IT strategies to use multi attribute weighted average method. We selected a panel of 19 experts who work at the green business related firms such as HP, IBM, Fujitsu and so on, and selected six assessment indices such as the urgency of the technology development, the technology gap between Korea and the developed countries, the effect of import substitution, the spillover effect of technology, the market growth, and the export potential of the package or stand-alone products by existing literature review. We submitted questionnaires at approximately weekly intervals to them for priorities of the green business/IT strategies. The strategies broadly classify as follows. The first strategy which consists of the green business/IT policy and standardization, process and performance management and IT industry and legislative alignment relates to government's role in the green economy. The second strategy relates to IT to support environment sustainability such as the travel and ways of working management, printer output and recycling, intelligent building, printer rationalization and collaboration and connectivity. The last strategy relates to green IT systems, services and usage such as the data center consolidation and energy management, hardware recycle decommission, server and storage virtualization, device power management, and service supplier management. All the questionnaires were assessed via a five-point Likert scale ranging from "very little" to "very large." Our findings show that the IT to support environment sustainability is prior to the other strategies. In detail, the green business /IT policy and standardization is the most important in the government's role. The strategies of intelligent building and the travel and ways of working management are prior to the others for supporting environment sustainability. Finally, the strategies for the data center consolidation and energy management and server and storage virtualization have the huge influence for green IT systems, services and usage This research results the following implications. The amount of energy consumption and CO2 emissions of IT equipment including electrical business equipment will need to be clearly indicated in order to manage the effect of green business/IT strategy. And it is necessary to develop tools that measure the performance of green business/IT by each step. Additionally, intelligent building could grow up in energy-saving, growth of low carbon and related industries together. It is necessary to expand the affect of virtualization though adjusting and controlling the relationship between the management teams.

Estimation of Surplus Solar Energy in Greenhouse (I) - Case Study Based on 1-2W Type - (온실내 잉여 태양에너지 산정 (I) - 1-2W형을 중심으로 -)

  • Suh, Won-Myung;Bae, Yong-Han;Ryou, Young-Sun;Lee, Sung-Hyoun;Yoon, Yong-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.79-86
    • /
    • 2009
  • This research performed to analyze surplus solar energy, which is generated from a greenhouse during daytime, and to make the basic materials for designing thermal energy storage system for surplus solar energy. For this goal, it analyzed the surplus solar energy coming from two types of greenhouse. The results of this research are as per the below: In the case of 1-2W-type greenhouse, this research gave the same temperature and ventilation condition regardless of regions, but it was judged that the quantity of surplus solar energy could be greatly changed, depending on the energy consumed for the photosynthesis and evapotranspiration of crops in the greenhouse, on the heating temperature during daytime and night, on the existence/non-existence of a curtain and its warming effect, and on the ventilation temperature suitable for the overcoming of high temperature troubles or for the optimum cultivation temperature. In the case of a single-span greenhouse, there was a big difference in energy incoming and outgoing by month, but throughout seasons, 85.0 % of the total energy put into the greenhouse was solar energy and the energy input by heating was just 15.0 % of the total. 26.4 % of the total energy input for the greenhouse was used for photosynthesis and evapotranspiration of crops, and 44.2 % of the remaining 73.6 % went out in the form of radiant heat through the surface of the greenhouse. That is, 25.2 % of the total energy loss was just the surplus solar energy. 67.6 % of the total heating energy was concentrically used for 3 months from December to February next year, but the surplus solar energy during the same period was just 19.4 % of the total annual quantity so it was found that the given condition was more restrictive in directly converting the surplus heat into greenhouse heating. Under the disadvantageous circumstance of 3 months from December to February next year, it was possible to supplement 28 % (December) $\sim$ 85 % (February) of heating energy with surplus solar energy.

Application of Solar Energy System for Agricutular Facility (농업용 수리시설의 태양광 시스템 적용)

  • Chung, Kwang-Kun;Lee, Kwang-Ya;Kim, Hea-Do
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1964-1969
    • /
    • 2006
  • In order to solve the problem of the existing gate it developed the solar energy gate. The solar energy gate quotient a friction force from the area contact which will call improved with line contact and it diminished. Because of the result, The operation power of the gate came to be small and the small-sized of the motor was possible. From the small-sized of the motor, the solar energy system introduction was possible and the expense for the production establishment of the gate was diminished. From KRC in 2005 demonstration it establishes the solar energy gate in nationwide 50 places and characteristic the monitoring efficiently.

  • PDF

Developing The Prediction Program of Heat and Cooling Loads by Modified Bin Methods (수정빈법을 이용한 냉난방부하 예측 프로그램 개발)

  • Lee, M.K.;Kim, J.T.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.4
    • /
    • pp.21-28
    • /
    • 2001
  • It is a time since sustainable architecture become a main issue of design concept in 21C. However, it is necessary to develope the tool estimating energy loads and uses in our architectural conditions for energy saving design. This study aims to develope the E-Load program to predict heat and cooling loads of houses. The program is developed by modified bin methods derived from ASHRAE TC 4.7. It consists of 4 divisions such as files, data inputs, energy load estimations and output options. The main processes of energy load estimations are based on ASHRAE fundamentals. The developed E-Load program is a easy and valid tool to predict heat and cooling loads of buildings.

  • PDF

A Study on Thermal Performance of the Heat Recovery Ventilator used Window (창호적용 배열회수 환기유닛의 열성능평가 연구)

  • Jang, Cheol-Yong;Cho, Soo;Sung, Uk-Joo;Lee, Jin-Sung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.129-134
    • /
    • 2008
  • Generally the window of the building is an objective of mining and having a distant view and also for a circulation it will can open and shut because becomes the structure insulation, the meat detailed drawing it does a very difficult portion, it is. And, recently the use of heat recovery ventilator has increased rapidly for improvement of air Quality and energy saving in building. But, the high efficient heat exchange will be more increasable than water vapors which were only occurred residential active. Purpose of this study is measurement of thermal performance about heat-recovery system integrated window. The result of the window thermal resistance is 1.80 $W/m^2K$ by KS F 2278. Air tightness is 5.96 m3/m2h at 4 Pa by KS F 2292.

  • PDF