• 제목/요약/키워드: Energy-Demand Reduction

검색결과 291건 처리시간 0.028초

틸팅기술 접목을 통한 철도차량 에너지 저감 연구 (A Study on the Energy Saving through the Tilting Technology of Rolling Stock)

  • 김대식;손경소;김호순;김진우;김종길
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.3027-3031
    • /
    • 2011
  • In this study, By the time that TTX technology is adopted as railway rolling stock, we analyzed quantitatively energy saving by reducing the power consumption with the reduction of the operation time through the speed improvement and suggested the necessity to introduce TTX technology in the domestic rail vehicles. The effect of energy saving by comparing and analyzing the power consumption during the operation by TTX Hanvit 200 and 8200 electric locomotives to pull trains on the same line was suggested and the efficiency of the main devices(i.e C/I) of Hanvit 200 was compared and analyzed by measuring the power consumption by a single unit. For improving KORAIL management environment, reducing energy usage is an urgent challenge, its measures for solving them are constantly considered in many areas. In addition, at the time of improving the conventional track to speed up and changing the signals, Tilting technology will be contributed to the management environment by enlarging the passengers' demand through the reduction of the operation time and saving energy using the existing infrastructure.

  • PDF

PHPP를 활용한 조적, 콘크리트, 목조 레이어 구성별 표준주택 냉·난방 에너지 요구량 평가 (Heating and Cooling Energy Demand Evaluating of Standard Houses According to Layer Component of Masonry, Concrete and Wood Frame Using PHPP)

  • 강유진;이준희;이화영;김수민
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권1호
    • /
    • pp.1-11
    • /
    • 2017
  • 건축물에서 냉방과 난방에 많은 양의 에너지가 소요되고 있다. 건축은 $CO_2$ 발생을 줄이고 에너지 소비 저감을 위하여 냉 난방 부하를 최소화할 필요성이 있다. 그리고 최근 주거문화는 친환경적이고 실내 쾌적성을 중시하는 방향으로 변화하면서 단독주택의 수요가 증가하고 있다. 국내 단독주택의 구조는 크게 조적조, 콘크리트조, 목조 주택으로 구분할 수 있다. 따라서 본 논문은 세 가지 구조방식(조적, 콘크리트, 목조)으로 구성된 동일 면적 단독주택의 냉 난방 부하와 에너지 요구량을 분석하였다. 구조방식별 벽체, 지붕, 바닥 레이어를 구성하였고, 각 레이어의 열관류율(U-value)은 목조 벽체와 같이 스터드를 고려해주기 위하여 PHPP 계산법을 이용하였다. 또한 스터드 유무에 따른 차이를 비교 분석하기 위하여 목조 벽체에서 스터드를 고려하지 않은 경우(비 스터드)를 분석하였다. 분석은 엑셀을 기반으로 자체 개발한 냉 난방 부하 산출 프로그램(CHLC)과 ECO2를 이용하였다. 냉 난방 부하와 에너지 요구량 결과, 목조 구조가 가장 높은 결과를 보였고 콘크리트 구조는 두 번째로 높은 값을 유지하는 것을 확인하였다. 두 구조방식은 에너지소비 측면에서 불리하다고 판단하였다. 결론적으로, 동일한 조건에서의 조적 구조는 다른 구조방식에 비하여 냉 난방 부하 및 에너지 요구량에 있어 유리하며, 목조 구조에서 스터드로 인한 열교를 제외한다면 에너지소비를 줄일 수 있다고 판단되었다.

LEAP 모형을 활용한 전자소재·부품업의 온실가스 감축 잠재량 분석 (Analysis of Greenhouse Gas Reduction Potentials in a Electronic·Electrical components company using LEAP Model)

  • 박영수;조영혁;김태오
    • 환경영향평가
    • /
    • 제22권6호
    • /
    • pp.667-676
    • /
    • 2013
  • This study analyzed the energy demand, greenhouse gas emission and greenhouse gas reduction potential of Electronic Electrical components company. The LEAP model targeting long term energy plan was used to establish the most efficient plan for the companies by examining the climate change policy of government and the countermeasures by companies. A scenario was created by having 11 greenhouse gases reduction plans to be introduced from 2011 as the basic plan. Regarding input data, energy consumption by business place and by use, number of employee from 2009 to 2012, land area and change in number of business places were utilized. The study result suggested that approximately 13,800 TJ of energy will be spent in 2020, which is more than 2 times of 2012 energy consumption. When the integrated scenario based on the reduction plan of companies would be enforced, approximately 3,000 TJ will be reduced in 2020. The emission of greenhouse gases until 2020 was forecasted as approximately 760,000 ton $CO_2eq$. When the integrated scenario would be enforced, the emission will be approximately 610,000 ton $CO_2eq$, which is decrease by approximately 150,000 ton $CO_2eq$. This study will help the efficient responding of eElectronic Electrical components company in preparing detail report on objective management system and enforcement plan. It will also contribute in their image as environment-friendly companies by properly responding to the regulation reinforcement of government and greenhouse gases emission target based on environment policy.

태양에너지를 이용한 이산화탄소 전환 기술의 현황 (Current Status of Solar-energy-based CO2 Conversion to Fuels)

  • 김예지;김종민;정연식
    • Current Photovoltaic Research
    • /
    • 제5권4호
    • /
    • pp.122-134
    • /
    • 2017
  • As a promising solution to global warming and growing energy demand, photocatalytic $CO_2$ conversion to useful fuels is widely studied to enhance the activity and selectivity of the $CO_2$ photoreduction reactions. In this review, an overview of fundamental aspects of the $CO_2$ reduction photocatalysts is provided. The recent development of the photocatalyst is also discussed, focusing on the mechanisms of light harvesting and charge transfer. Besides, this review sets its sight on inspiring new ideas toward a practical $CO_2$ conversion technology.

수소경제 관점의 전기에너지주택 보급기반 구축에 관한 연구 (A Study on the Infrastructure of All-electric Houses in the Viewpoint of Hydrogen Economy)

  • 황성욱;이현주;김강식;나환선;김정훈
    • 한국수소및신에너지학회논문집
    • /
    • 제23권1호
    • /
    • pp.100-109
    • /
    • 2012
  • In this paper, some ideas are proposed to establish the infrastructure of all-electric houses which are able to reduce primary energy consumption and $CO_2$ emission by adopting heat pump systems and induction heating cookers excluding the use of fossil fuel energy. This electrification concept is based on the consumption of only one type of energy which means electricity as secondary energy and the conventional fossil fuel energy is just consumed to generate electricity as primary energy. All-electric house is laid on the extension of the hydrogen economy in a long-term viewpoint so that the effectiveness of this new conceptual house is estimated analyzing the reduction of $CO_2$ emission. In this analysis, the balance of electricity supply and demand is considered including the construction of new power plants by renewable energy such as nuclear, IGCC and fuel cell because decarbonization is an essential element of hydrogen technology and economy and this action is accomplished in both supply and demand side of electricity. The results are able to contribute to develop various useful hydrogen policies and strategies and some detail researches are required previously to make the best application of this new conceptual house.

지연 이중 버퍼링: OneNAND 플래시를 이용한 페이지 반입 비용 절감 기법 (Delayed Dual Buffering: Reducing Page Fault Latency in Demand Paging for OneNAND Flash Memory)

  • 주용수;박재현;정성우;정의영;장래혁
    • 대한전자공학회논문지SD
    • /
    • 제44권3호
    • /
    • pp.43-51
    • /
    • 2007
  • NAND와 NOR 플래시의 장점을 결합한 OneNAND 플래시가 출시되면서 기존의 NAND 플래시를 빠르게 대체하게 되었다. 하지만 기존의 NAND 플래시 기반 요구 페이징 시스템에서는 OneNAND 플래시의 기능들이 제대로 활용되지 않았다. 본 연구에서는 OneNAND 플래시의 임의 접근 기능과 이중 페이지 버퍼를 활용하는 새로운 OneNAND 플래시 기반 요구 페이징 기법인 지연 이중 버퍼링 기법을 제안하였다. 이 기법은 요구된 폐이지를 페이지 버퍼로부터 주기억장치로 이동하는 데 걸리는 시간을 효과적으로 절감함으로써 폐이지 반입 비용을 절감하였다. 실험 결과, 본 연구에서 제안한 기법은 평균 28.5%의 수행 시간 절감 효과와 4.4%의 페이징 시스템 에너지 절감 효과를 보였다.

Active VM Consolidation for Cloud Data Centers under Energy Saving Approach

  • Saxena, Shailesh;Khan, Mohammad Zubair;Singh, Ravendra;Noorwali, Abdulfattah
    • International Journal of Computer Science & Network Security
    • /
    • 제21권11호
    • /
    • pp.345-353
    • /
    • 2021
  • Cloud computing represent a new era of computing that's forms through the combination of service-oriented architecture (SOA), Internet and grid computing with virtualization technology. Virtualization is a concept through which every cloud is enable to provide on-demand services to the users. Most IT service provider adopt cloud based services for their users to meet the high demand of computation, as it is most flexible, reliable and scalable technology. Energy based performance tradeoff become the main challenge in cloud computing, as its acceptance and popularity increases day by day. Cloud data centers required a huge amount of power supply to the virtualization of servers for maintain on- demand high computing. High power demand increase the energy cost of service providers as well as it also harm the environment through the emission of CO2. An optimization of cloud computing based on energy-performance tradeoff is required to obtain the balance between energy saving and QoS (quality of services) policies of cloud. A study about power usage of resources in cloud data centers based on workload assign to them, says that an idle server consume near about 50% of its peak utilization power [1]. Therefore, more number of underutilized servers in any cloud data center is responsible to reduce the energy performance tradeoff. To handle this issue, a lots of research proposed as energy efficient algorithms for minimize the consumption of energy and also maintain the SLA (service level agreement) at a satisfactory level. VM (virtual machine) consolidation is one such technique that ensured about the balance of energy based SLA. In the scope of this paper, we explore reinforcement with fuzzy logic (RFL) for VM consolidation to achieve energy based SLA. In this proposed RFL based active VM consolidation, the primary objective is to manage physical server (PS) nodes in order to avoid over-utilized and under-utilized, and to optimize the placement of VMs. A dynamic threshold (based on RFL) is proposed for over-utilized PS detection. For over-utilized PS, a VM selection policy based on fuzzy logic is proposed, which selects VM for migration to maintain the balance of SLA. Additionally, it incorporate VM placement policy through categorization of non-overutilized servers as- balanced, under-utilized and critical. CloudSim toolkit is used to simulate the proposed work on real-world work load traces of CoMon Project define by PlanetLab. Simulation results shows that the proposed policies is most energy efficient compared to others in terms of reduction in both electricity usage and SLA violation.

경기도 대기질 개선 정책의 온실가스 동시 저감 및 그에 따른 공편익 효과 분석 (Greenhouse Gas Reduction by Air Quality Management Policy in Gyeonggi-do and Its Co-benefit Analysis)

  • 김동영;최민애
    • 한국대기환경학회지
    • /
    • 제33권6호
    • /
    • pp.570-582
    • /
    • 2017
  • In recent years, national and local government's air quality management and climate change adaptation policy has been significantly strengthened. The measures in the two policies may be in a relationship of trade-off or synergy to each other. Greenhouse gases and air pollutants are mostly emitted from the same sources of using considerable amounts of fossil fuels. Co-benefits, in which either measure has a positive effect on the other, may be maximized by reducing the social costs and by consolidating the objectives of the various policies. In this study, the co-benefits were examined by empirically analyzing the effects of air pollutants and greenhouse gas emission reduction, social cost, and cost effectiveness between the two policies. Of the total 80 projects, the next 12 projects generated co-benefits. They are 1) extend restriction area of solid fuel use, 2) expand subsidy of low-$NO_x$ burner, 3) supply hybrid-vehicles, 4) supply electric-vehicles, 5) supply hydrogen fuel cell vehicles, 6) engine retrofit, 7) scrappage of old car, 8) low emission zone, 9) transportation demand management, 10) supply land-based electric of ship, 11) switching anthracite to clean fuel in private sector, 12) expand regional combined-energy supply. The benefits of air pollutants and greenhouse gas-related measures were an annual average of KRW 2,705.4 billion. The social benefits of the transportation demand management were the highest at an annual average of KRW 890.7 billion, and followed by scrappage of old cars and expand regional combined-energy supply. When the social benefits and the annual investment budgets are compared, the cost effectiveness ratio is estimated to be about 3.8. Overall, the reduction of air pollutants caused by the air quality management policy of Gyeonggi-do resulted in an annual average of KRW 4,790.2 billion. In the point sources management sector, the added value of $CO_2$ reduction increased by 4.8% to KRW 1,062.8 billion, while the mobile sources management sector increased by 3.6% to KRW 3,414.1 billion. If social benefits from $CO_2$ reduction are added, the annual average will increase by 7.2% to KRW 5,135.4 billion. The urban and energy management sectors have shown that social benefits increase more than twice as much as the benefits of $CO_2$ reduction. This result implies that more intensive promotion of these measures are needed. This study has significance in that it presents the results of the empirical analysis of the co-benefits generated between the similar policies in the air quality management and the climate change policy which are currently being promoted in Gyeonggi-do. This study suggested that the method of analyzing the policy effect among the main policies in the climate atmospheric policy is established and the effectiveness and priority of the major policies can be evaluated through the policy correlation analysis based on the co-benefits. It is expected that it could be a basis for evaluation the efficiency of the climate change adaptation and air quality management policies implemented by the national and local governments in the future.

국가 온실가스 감축목표(NDC) 상향안 달성을 위한 17개 광역시도별 발전 및 최종에너지 소비 변화 분석 (An Analysis of Changes in Power Generation and Final Energy Consumption in Provinces to Achieve the Updated Nationally Determined Contribution (NDC))

  • 노민영;전승호;김문태;김수덕
    • 자원ㆍ환경경제연구
    • /
    • 제31권4호
    • /
    • pp.865-885
    • /
    • 2022
  • 2021년, 정부는 국가 온실가스 감축목표(Nationally Determined Contribution, NDC)를 상향 설정하고 에너지 분야의 주요 감축 방안과 감축목표를 제시하였으나, 다양한 쟁점이 논의되고 있다. 그 중 NDC 감축목표를 달성하기 위한 에너지수요와 신재생에너지 발전 비중을 17개 광역시도 통합평가모형 GCAM-Korea로 분석하였다. 그 결과, 2030년 최종소비부분의 에너지수요는 2018년과 비슷한 수준이었다. 이는 석탄 비중의 감소와 전기화가 진행되면서 가능한 것으로 보이며, 특히, 산업부문에서 그 현상이 뚜렷이 나타났다. 최종소비부문에서 증가한 전기수요와 감소한 석탄 발전량(2030년 발전 비중 12.8%)은 신재생(33.1%), 가스(24.6%), 원자력(18.0%)이 부담하는 것으로 나타났다. 이에 따라 미래의 주요 발전지역은 현 주요 발전지역인 충남(주요 발전원, 석탄)에서 경북(원자력), 경기(가스), 전남(원자력, 가스), 강원(태양광, 풍력)으로 바뀌었다. 이와 같은 연구 결과는 국가와 지자체의 에너지 정책 및 온실가스 감축 전략 도출을 위한 기반자료로 활용될 수 있을 것으로 기대한다.

공동주택 변압기용량 적정 산정을 위한 수용률 개선 및 사례 연구를 통한 경제성 평가 (The Study on Estimation of The Transformer Capacity of Housing and Economic Evaluation Using Case Studies)

  • 이윤상;서정열;신희상;조성민;김재철
    • 조명전기설비학회논문지
    • /
    • 제24권9호
    • /
    • pp.142-149
    • /
    • 2010
  • Interest in energy efficiency and savings have been rising internationally. For this reason, the domestic housing construction in the area of power equipment is being actively studied. Currently approximately 400,000 per year of domestic housing is being built. Applies to housing construction during the current transformer capacity low utilization and load factor has been applied has been designed. In other words, excessively high reserve capacity has been applied. According to this problem, initial facility costs and power losses will cause because transformer low utilization be appropriated. Thus, the energy efficiency drops. In this paper, analysis of past utilization of the housing transformer, and applying an appropriate demand factor has been analyzing the energy loss reduction. this analysis of current domestic conditions for the proper housing transformer scheme is to calculate the capacity.