• Title/Summary/Keyword: Energy trapping effect

Search Result 42, Processing Time 0.034 seconds

A Study on Particle Displacement Distributions of Energy-trapped Piezoelectric Resonators and Filters Utilizing the Harmonic Modes (고차진동을 이용하는 에너지포획형 압전 공진자와 필터의 변위분포에 관한 연구)

  • 이개명
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.954-962
    • /
    • 1998
  • Energy-trapped thickness vibrations of piezoelectric substrates are utilized in fabricating resonators and filters which have their operating frequencies in HF band. Normalized particle displacement distributions of the fundamental thickness shear vibration mode and overtone modes into the thickness direction in energy-trapped resonators and double-coupled filters were obtained by solving the wave equation and calculating the solved equations. These results show that as the number order of the harmonic mode in a energy-trapped resonator becomes larger, the degree of energy-trapping in the resonator increase, and if the conditions for energy-trapping become sufficiently weak, the energy-trapping effect of the harmonic mode which has the lower order disappears the earlier. Above simulation results were proved by the experiments.

  • PDF

Study on the One-Strip Electrode Ceramic Filter Using the Energy Trapping Effect (에너지트랩 효과를 이용한 단일전극 세라믹 필터에 관한 연구)

  • 송준태;정인영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.1
    • /
    • pp.73-81
    • /
    • 1991
  • In order to simulate the ceramic filter in the state of the one-strip electrode, the theory has been analyzed and a computer program has been developed using the energy trapping effect. The ceramic filters were fabricated using the PZT-4 specimen. The necessary condition that the ceramic filter has the energy trapping effect is that the electroded portion frequency should be smaller than the unelectroded portion frequency when the wave number is zero. Each of the average differences of the resonant point and bandwidth between by the theoretical calculations and by experiment results was 5.6[%] and 3.72[%]. It is considered that the one-strip ceramic filter having a desired characteristics and the lowest difference can be fabricated easily by means of the simulation developed in this paper and the fabrication methods.

  • PDF

The characteristics of ceramic filter using energy trapping effect (에너지 트래핑 효과를 이용한 세라믹 필터의 특성에 관한 연구)

  • 박기엽;김원석;송준태
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.144-150
    • /
    • 1995
  • Ceramic filter using energy trapping effect is used bandpass filter at high frequency. In this paper, the resonant points of the symmetrical modes and antisymmetrical modes were theoretically analyed and synthesized these modes in order to know the filter characteristics. We simulated them using the computer and also fabricated the ceramic filter using PZT-4 piezoelectric plate made by Valpey Fisher Co., The 1.5[.mu.m] - thick platinum electrode were deposited on the ceramic plates with the various masks. The characteristics of the fabricated filters were measured using the spectrum analyzer. Experimental data were compared with the theoretical results. The maximum-pass frequencies coinsided exactly. The bandwidths of the fabricated filters were slightly different between theoretical and experimental results. We found that these phenomenon were caused by the stray capacitance between the two neighbor electrodes..

  • PDF

The characteristics of two-electrod-ceramic filter using energy trapping effect (에너지 트래핑 효과를 이용한 이중전극 세라믹 필터의 특성)

  • Kim, Won-Seok;Park, Gi-Yub;Song, Jun-Tai
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1419-1421
    • /
    • 1994
  • The method of suppression based on the principle of energy trapping effect is very effective at high frequency. In this paper, We intended to get resonant frequency and bandpass filer characteristics in appling to vibration mode of PZT-4 and PZT-8 using trapped energy phenomenon. First, we theoretically analyzed a piezoelectric ceramic filter characteristics changing the thickness of ceramic plate, electrode spacing and distance between the two pairs of electrodes. We also experimentally investigated characteristics of ceramic filter made.

  • PDF

Current Status in Light Trapping Technique for Thin Film Silicon Solar Cells (박막태양전지의 광포획 기술 현황)

  • Park, Hyeongsik;Shin, Myunghoon;Ahn, Shihyun;Kim, Sunbo;Bong, Sungjae;Tuan, Anh Le;Hussain, S.Q.;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.95-102
    • /
    • 2014
  • Light trapping techniques can change the propagation direction of incident light and keep the light longer in the absorption layers of solar cells to enhance the power conversion efficiency. In thin film silicon (Si) solar cells, the thickness of absorption layer is generally not enough to absorb entire available photons because of short carrier life time, and light induced degradation effect, which can be compensated by the light trapping techniques. These techniques have been adopted as textured transparent conduction oxide (TCO) layers randomly or periodically textured, intermediate reflection layers of tandem and triple junction, and glass substrates etched by various patterning methods. We reviewed the light trapping techniques for thin film Si solar cells and mainly focused on the commercially available techniques applicable to textured TCO on patterned glass substrates. We described the characterization methods representing the light trapping effects, texturing of TCO and showed the results of multi-scale textured TCO on etched glass substrates. These methods can be used tandem and triple thin film Si solar cells to enhance photo-current and power conversion efficiency of long term stability.

Statistical Analysis on the trapping boundary of outer radiation belt during geosynchronous electron flux dropout : THEMIS observation

  • Hwang, Jung-A;Lee, Dae-Young;Kim, Kyung-Chan;Choi, Eun-Jin;Shin, Dae-Kyu;Kim, Jin-Hee;Cho, Jung-Hee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.90.2-90.2
    • /
    • 2012
  • Geosynchronous electron flux dropouts are most likely due to fast drift loss of the particles to the magnetopause (or equivalently, the "magnetopause shadowing effect"). A possible effect related to the drift loss is the radial diffusion of PSD due to gradient of PSD set by the drift loss effect at an outer L region. This possibly implies that the drift loss can affect the flux levels even inside the trapping boundary. We recently investigated the details of such diffusion process by solving the diffusion equation with a set of initial and boundary conditions set by the drift loss. Motivated by the simulation work, we have examined observationally the energy spectrum and pitch angle distribution near trapping boundary during the geosynchronous flux dropouts. For this work, we have first identified a list of geosynchronous flux dropout events for 2007-2010 from GOES satellite electron measurements and solar wind pressures observed by ACE satellite. We have then used the electron data from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft measurements to investigate the particle fluxes. The five THEMIS spacecraft sufficiently cover the inner magnetospheric regions near the equatorial plane and thus provide us with data of much higher spatial resolution. In this paper, we report the results of our investigations on the energy spectrum and pitch angle distribution near trapping boundary during the geosynchronous flux dropout events and discuss implications on the effects of the drift loss on the flux levels at inner L regions.

  • PDF

Lubricating Effect of Water-soluble Hexagonal Boron Nitride Nanolubricants on AISI 304 Steel Sliding Pair

  • Gowtham Balasubramaniam;Dae-Hyun Cho
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.43-48
    • /
    • 2023
  • In this study, we investigate the tribological behavior of AISI 304 stainless steel pairs under deionized water and hexagonal boron nitride (h-BN) water dispersion lubrication. The specimen friction and wear properties are evaluated using a reciprocating ball-on-flat tribometer. The coefficient of friction remains nearly constant throughout the test under both lubricant conditions. The wear depth of the specimens under h-BN lubrication is smaller than that under deionized water lubrication, indicating the inhibition behavior of h-BN nanolubricants on direct metal-metal contacts. Optical micrographs and stylus profilometer measurements are performed to evaluate the severity of damage caused by the sliding motion and to determine the wear morphology of the specimens, respectively. The results show that h-BN nanolubricants does not have a significant effect on the friction behavior but demonstrates reduced wear owing to their trapping effect between the sliding interfaces. Moreover, scanning electron microscopy and energy-dispersive X-ray spectroscopy images of the specimens were acquired to confirm the trapping effect of h-BN between the sliding interfaces. The results also suggest that the trapped lubricants can distribute the contact pressure, reducing the wear damage caused by the metal-metal contact at the interface. In conclusion, h-BN nanolubricants have potential as an anti-wear additive for lubrication applications. Further investigation is needed to provide direct evidence of the trapping effect of h-BN nanoparticles between the sliding interfaces. These findings could lead to the development of more efficient and effective lubricants for various industrial applications.

Surface Photovoltage Spectroscopy on Dyed Zinc Oxide (색소흡착산화아연에 대한 표면광기전력의 분광학적 연구)

  • Kim, Young-Soon;Sung, Yong-Kiel
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.251-258
    • /
    • 1984
  • The mechanism of photosensitization and the affect of binder on dye-sensitized ZnO have been studied by surface photovoltage spectroscopy. It has been found that the value of energy trapping level $E_{t1}$ on ZnO is 1.12eV (${\lambda$ = 1,100nm) and that of energy trapping level $E_{t2}$ on dye-sensitized ZnO is 0.99eV (${\lambda$ = 1,250nm) which is shifted towards a longer wavelength. The effect of binder on ZnO has been increased the efficiency of surface photovoltage, but it does not effect the values of energy trapping level. The acid-type dyes agree well with the prediction based on an electron transfer mechanism. The desensitization of the Na salt-type dyes for the intrinsic photoresponse of zinc oxide can be explained by energy transfer mechanism. It has been obtained that the dye-sensitized ZnO indicates the possibility of electrophotographic photosensitizer for the infrared range of light.

  • PDF

Red Organic Light-emitting Diodes utilizing Energy Transfer and Charge Trapping

  • Kim, Ju-Seung;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.3
    • /
    • pp.91-96
    • /
    • 2005
  • We report the efficient red light-emitting diodes based on the fluorescent dye 4-(dicyanomethylene)-2-i-propyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTI) and 5,6,11,12-tetraphenyl naphthacene (rubrene) codoped in the tris(8-hydroxyquinoline)aluminum $(Alq_3)$. Luminance efficiency of 2.2 cd/A with a Commission International De L'Eclairage (CIE) chromaticity coordinate of x, y = (0.640, 0:350) are achieved at the driving current density of $20\;mA/cm^2$. Adding the rubrene to the DCJTI in tris(8-hydroxyquinoline)aluminum $(Alq_3)$, the red color purity and luminance efficiency improved comparing to the DCJTI only doped devices because the rubrene molecules assist the polarization effect of DCJTI by molecular interaction and enhance the energy transfer from $(Alq_3)$ to DCJTI.

The Influence of Radiation Trapping on the Metastable Population Density and Applications to Low-pressure Plasma

  • Lee, Yeong-Gwang;O, Se-Jin;Jeong, Jin-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.245-246
    • /
    • 2011
  • Emission lines ratios were used for diagnostics of and excited level densities in low-temperature plasmas. In this work, an optical emission spectroscopy (OES) was used to determine the electron temperature and metastable level densities in low-pressure inductively coupled plasma. The emission spectroscopy method was based on a simple collisional-radiative model. The selected lines of the Ar(4p to 4s) were influenced by the radiation trapping at relatively high pressures where the plasma become optically thick. To quantify this effect, a pressure dependence factor ${\alpha}$(P) was derived by using corrections for the measured intensities. It was found that the lower metastable level densities were obtained when ${\alpha}$(P) increased with the increasing discharge pressure. The effect of non-Maxwellian electron energy distribution functions (EEDFs) on the metastables was also presented and discussed.

  • PDF