• Title/Summary/Keyword: Energy storage density

Search Result 402, Processing Time 0.024 seconds

Nanoscale Characterization of a Heterostructure Interface Properties for High-Energy All-Solid-State Electrolytes (고에너지 전고체 전해질을 위한 나노스케일 이종구조 계면 특성)

  • Sung Won Hwang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.28-32
    • /
    • 2023
  • Recently, the use of stable lithium nanostructures as substrates and electrodes for secondary batteries can be a fundamental alternative to the development of next-generation system semiconductor devices. However, lithium structures pose safety concerns by severely limiting battery life due to the growth of Li dendrites during rapid charge/discharge cycles. Also, enabling long cyclability of high-voltage oxide cathodes is a persistent challenge for all-solid-state batteries, largely because of their poor interfacial stabilities against oxide solid electrolytes. For the development of next-generation system semiconductor devices, solid electrolyte nanostructures, which are used in high-density micro-energy storage devices and avoid the instability of liquid electrolytes, can be promising alternatives for next-generation batteries. Nevertheless, poor lithium ion conductivity and structural defects at room temperature have been pointed out as limitations. In this study, a low-dimensional Graphene Oxide (GO) structure was applied to demonstrate stable operation characteristics based on Li+ ion conductivity and excellent electrochemical performance. The low-dimensional structure of GO-based solid electrolytes can provide an important strategy for stable scalable solid-state power system semiconductor applications at room temperature. The device using uncoated bare NCA delivers a low capacity of 89 mA h g-1, while the cell using GO-coated NCA delivers a high capacity of 158 mA h g−1 and a low polarization. A full Li GO-based device was fabricated to demonstrate the practicality of the modified Li structure using the Li-GO heterointerface. This study promises that the lowdimensional structure of Li-GO can be an effective approach for the stabilization of solid-state power system semiconductor architectures.

  • PDF

Sintering Behavior of Borate-Based Glass Ceramic Solid Electrolytes for All-Solid Batteries (전고체전지용 붕산염 유리 세라믹 고체 전해질의 조성비에 따른 소결 특성 연구)

  • Jeong Min Lee;Dong Seok Cheong;Sung Hyun Kang;Tirtha Raj Acharya;Eun Ha Choi;Weon Ho Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.445-450
    • /
    • 2024
  • The expansion of lithium-ion battery usage beyond portable electronic devices to electric vehicles and energy storage systems is driven by their high energy density and favorable cycle characteristics. Enhancing the stability and performance of these batteries involves exploring solid electrolytes as alternatives to liquid ones. While sulfide-based solid electrolytes have received significant attention for commercialization, research on amorphous-phase glass solid electrolytes in oxide-based systems remains limited. Here, we investigate the glass transition temperatures and sintering behaviors by changing the molecular ratio of Li2O/B2O3 in borate glass comprising Li2O-B2O3-Al2O3 system. The glass transition temperature is decreasing as increasing the amount of Li2O. When we sintered at 450℃, just above the glass transition temperature, the samples did not consolidate well, while the proper sintered samples could be obtained under the higher temperature. We successfully obtained the borate glass ceramics phases by melt-quenching method, and the sintering characteristics are investigated. Future studies could explore optimizing ion conductivity through refining processing conditions, adjusting the glass former-to-modifier ratio, and incorporating additional Li salt to enhance the ionic conductivity.

Techno-economic Analysis on the Present and Future of Secondary Battery Market for Electric Vehicles and ESS (전기차와 ESS용 이차전지 시장의 현재와 미래에 대한 기술경제적 분석)

  • Jung Seung Lee;Soo Kyung Kim
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Interest in the future of the battery market is growing as Tesla announces plans to increase production of electric vehicles and to produce batteries. Tesla announced an action plan to reduce battery prices by 56% through 'Battery Day', which included expansion of factories to internalize batteries and improvement of materials and production technology. In the trend of automobile electrification, the expansion of the battery market, which accounts for 40% of the cost of electric vehicles, is inevitable, and the size of the electric vehicle battery market in 2026 is expected to increase more than five times compared to 2016. With the development of materials and process technology, the energy density of electric vehicle batteries is increasing while the price is decreasing. Soon, electric vehicles and internal combustion locomotives are expected to compete on the same line. Recently, the mileage of electric vehicles is approaching that of an internal combustion locomotive due to the installation of high-capacity batteries. In the EV battery market, Korean, Chinese and Japanese companies are fiercely competing. Based on market share in the first half of 2020, LG Chem, CATL, and Panasonic are leading the EV battery supply, and the top 10 companies included 3 Korean companies, 5 Chinese companies, and 2 Japanese companies. All-solid, lithium-sulfur, sodium-ion, and lithium air batteries are being discussed as the next-generation batteries after lithium-ion, among which all-solid-state batteries are the most active. All-solid-state batteries can dramatically improve stability and charging speed by using a solid electrolyte, and are excellent in terms of technology readiness level (TRL) among various technology alternatives. In order to increase the competitiveness of the battery industry in the future, efforts to increase the productivity and economy of electric vehicle batteries are also required along with the development of next-generation battery technology.

Physicochemical Properties of Extruded Defatted Hemp Seed and Its Energy Bar Manufacturing (압출성형 삼종실의 이화학적 특성과 에너지바의 제조)

  • Gu, Bon-Jae;Norajit, Krittika;Ryu, Gi-Hyung
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.127-134
    • /
    • 2010
  • This study was to develop high-nutritious energy bar from extruded hemp obtained by extrusion process. Mixture of rice flour and defatted hemp was extruded at a barrel temperature of 110 and 130$^{\circ}C$, and moisture content of 20 and 25%. Properties of extrudates such as bulk density, expansion index, breaking strength, apparent elastic modulus, water absorption index (WAI), water solubility index (WSI) have been analyzed. The antioxidant potential was determined by the DPPH-radical scavenging assay. The expansion index was the highest in rice-hemp extrudate at 130$^{\circ}C$ barrel temperature and 20% moisture content among the other hemp-added extrudates. The WAI was increased with increase in moisture content, while the WSI was increased with increase in barrel temperature. The peak viscosity of rice extrudate had higher valule than those of extrudate added with hemp. DPPH scavenging activity of rice-hemp extrudate at 130$^{\circ}C$ barrel temperature and 20% moisture content showed the highest value. Sensory properties, moisture content and color were assessed for quality of energy bar. The color values of the energy bar indicated decreasing L (lightness) and b (yellowness), and increasing a (redness) after 30 days storage at ambient condition. The highest overall acceptable was the energy bar added with rice-hemp extrudate at 130$^{\circ}C$ barrel temperature and 20% moisture content.

THE EFFECT OF DIFFERENT CURING MODES ON COMPOSITE RESIN/DENTIN BOND STRENGTH IN CLASS ICAVITIES (1급 와동에서 상아질과 복합레진의 결합강도에 대한 중합방법의 효과)

  • Baek, Shin-Young;Cho, Young-Gon;Song, Byeong-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.5
    • /
    • pp.428-434
    • /
    • 2008
  • The purpose of this study was to compare the microtensile bond strength in Class I cavities associated with different light curing modes of same light energy density. Occlusal enamel was removed to expose a flat dentin surface and twenty box-shaped Class I cavities were prepared in dentin. Single Bond (3M Dental product) was applied and Z 250 was inserted using bulk technique. The composite was light-cured using one of four techniques, pulse delay (PD group), soft-start (SS group), pulse cure (PC group) and standard continuous cure (CC group). The light-curing unit capable of adjusting time and intensity (VIP, Bisco Dental product) was selected and the light energy density for all curing modes was fixed at $16J/cm^2$. After storage for 24 hours, specimens were sectioned into beams with a rectangular cross-sectional area of approximately $1mm^2$ Microtensile bond strength $({\mu}TBS)$ test was per- formed using a univel·sal testing machine (EZ Test, Shimadzu Co.). The results were analyzed using oneway ANOVA and Tukey's test at significance level 0.05. The ${\mu}TBS$ of PD group and SS group was higher than that of PC group and CC group. Within the limitations of this in vitro study, modification of curing modes such as pulse delay and soft start polymerization can improve resin/dentin bond strength in Class I cavities by controlling polymerization velocity of composite resin.

High Voltage Performance of the Electrical Double Layer Capacitor with Various Electrolytes (다양한 전해액을 적용한 전기이중층 커패시터의 고전압 특성 연구)

  • Kim, Jung Wook;Choi, Seung-Hyun;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.2
    • /
    • pp.34-40
    • /
    • 2017
  • Electric double layer capacitors (EDLC: electric double layer capacitors) have drew attention as an energy storage device for the next generation because of their outstanding power capability and durability. But their usage is somewhat limited due to low energy density over secondary batteries. One of methods to improve the energy of EDLC is expanding the voltage window of cell operation by increasing the charge cut-off voltage. In this study, $SBP-BF_4$ (spirobipyrrolidinium tetrafluoroborate), $TEA-BF_4$ (tetraethylammonium tetraflouroborate) and $EMI-BF_4$ (1-ethyl-3-methylimidazolium tetrafluoroborate) in AN (acetonitrile) were selected to evaluate the possibility of application at high voltage environment. The LSV (linear sweep voltammetry) measurements showed that the 1.5M SBP-BF4/AN electrolyte was stable over a wide potential window and showed the best electrochemical performance compared to other combinations of electrolytes at high voltage environments (over 3.0 V). Furthermore, TMSP (tris(trimethylsilyl) phosphite) was applied to 1.5M SBP-BF4/AN in order to maintain stable performance at high voltage for the long period of time. The electrolyte with TMSP additive showed the capacity retention of 93% after 10,000 cycles at 3.3 V.

Analysis of Gas-to-Liquid Phase Transformation of Hydrogen in Cryogenic Cooling Tube (초저온 냉각튜브 내 수소기체의 액체수소로의 상변환 분석)

  • Lee, Dae-Won;Nguyen, Hoang Hai;So, Myeong-Ki;Nah, In-Wook;Park, Dong-Wha;Kim, Kyo-Seon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.49-55
    • /
    • 2018
  • Under the era of energy crisis, hydrogen energy is considered as one of the most potential alternative energies. Liquid hydrogen has much higher energy density per unit volume than gas hydrogen and is counted as the excellent energy storage method. In this study, Navier-Stokes equations based on 2-phase model were solved by using a computational fluid dynamics program and the liquefaction process of gaseous hydrogen passing through a cryogenic cooling tube was analyzed. The copper with high thermal conductivity was assumed as the material for cryogenic cooling tube. For different inlet velocities of 5 m/s, 10 m/s and 20 m/s for hydrogen gas, the distributions of fluid temperature, axial and radial velocities, and volume fractions of gas and liquid hydrogens were compared. These research results are expected to be used as basic data for the future design and fabrication of cryogenic cooling tube to transform the hydrogen gas into liquid hydrogen.

Acoustic Characteristics of Watermelon for Internal Quality Evaluation (내부품질 판정을 위한 수박의 음파특성)

  • 최동수;최규홍;이강진;이영희;김만수
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.59-66
    • /
    • 2002
  • The objectives of the study were to analyze the acoustic characteristics related to the internal quality factors of watermelon(Citrulus Vulgaris Schrad). Among the various internal quality factors, only four factors such as ripeness, inside cavity, yellow belt and blood flesh were considered in this study. Relationships between the internal quality factors, the day after fruit set and the day after harvest were also investigated. Test apparatus was the same as the apparatus described in the previous study(Choi et at., 2000). The selected sample was divided into four groups; 69 samples used for ripeness tests 56 samples for ripeness test along the day after fruit set and for yellow belt detection, 60 samples for ripeness along the day after harvest 44 samples fur blood flesh detection. It was shown that the first peak frequencies shifted to the lower range and the energy ratios of the bandwidths between 0∼550 Hz to the bandwidths between 850∼2500 Hz increased as the day after fruit set elapsed. Since the acoustic responses of the watermelon such as frequency and magnitude began to change from 10 days after harvest, the storage period of watermelon in a normal temperature condition seemed to be approximately 10 days after harvest. The ratios of the first peak amplitude to the maximum peak amplitude fur the sound watermelon showed the higher value than that fur watermelon with cavity inside, and the separation between the sound and cavity inside could be accomplished by the ratio value of 0.25. The energy ratios (0∼550 Hz/850∼2,500 Hz) for the watermelon with cavity inside showed the higher value than 2.3. The frequency characteristics of the yellow belt watermelon appeared mostly in the range of 600∼900 Hz frequencies. The yellow belt watermelon showing the energy spectral density function at this frequency range to be over 70 seemed to be not a marketable commodity, The energy ratios(0∼550 Hz/850∼2,500 Hz) for the blood flesh watermelon showed the higher value than 3.5.

Alternative Concept to Enhance the Disposal Efficiency for CANDU Spent Fuel Disposal System (CANDU 사용후핵연료 처분시스템 효율향상 개념 도출)

  • Lee, Jong-Youl;Cho, Dong-Geun;Kook, Dong-Hak;Lee, Min-Soo;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.169-179
    • /
    • 2011
  • There are two types of nuclear reactors in Korea and they are PWR type and CANDU type. The safe management of the spent fuels from these reactors is very important factor to maintain the sustainable energy supply with nuclear power plant. In Korea, a reference disposal system for the spent fuels has been developed through a study on the direct disposal of the PWR and CANDU spent fuel. Recently, the research on the demonstration and the efficiency analyses of the disposal system has been performed to make the disposal system safer and more economic. PWR spent fuels which include a lot of reusable material can be considered being recycled and a study on the disposal of HLW from this recycling process is being performed. CANDU spent fuels are considered being disposed of directly in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System (KRS) which was to dispose of both PWR type and CANDU type, the more effective CANDU spent fuel disposal systems were developed. To do this, the disposal canister for CANDU spent fuels was modified to hold the storage basket for 60 bundles which is used in nuclear power plant. With these modified disposal canister concepts, the disposal concepts to meet the thermal requirement that the temperature of the buffer materials should not be over $100^{\circ}C$ were developed. These disposal concepts were reviewed and analyzed in terms of disposal effective factors which were thermal effectiveness, U-density, disposal area, excavation volume, material volume etc. and the most effective concept was proposed. The results of this study will be used in the development of various wastes disposal system together with the HLW wastes from the PWR spent fuel recycling process.

Energy Saving Effect for High Bed Strawberry Using a Crown Heating System (고설 딸기 관부 난방시스템의 에너지 절감 효과)

  • Moon, Jong Pil;Park, Seok Ho;Kwon, Jin Kyung;Kang, Youn Koo;Lee, Jae Han;Kim, Hyung Gweon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.420-428
    • /
    • 2019
  • This study is the heating energy saving test of the high-bed strawberry crown heating system. The system consists of electric hot water boiler, thermal storage tank, circulation pump, crown heating pipe(white low density polyethylene, diameter 16mm) and a temperature control panel. For crown heating, the hot water pipe was installed as close as possible to the crown part after planting the seedlings and the pipe position was fixed with a horticultural fixing pin. In the local heating type, hot water at $20{\sim}23^{\circ}C$ is stored in the themal tank by using an electric hot water boiler, and crown spot is partially heated at the setting temperature of $13{\sim}15^{\circ}C$ by turning on/off the circulation pump using a temperature sensor for controlling the hot water circulation pump which was installed at the very close to crown of strawberry. The treatment of test zone consisted of space heating $4^{\circ}C$ + crown heating(treatment 1), space heating $8^{\circ}C$(control), space heating $6^{\circ}C$ + crown heating(treatment 2). And strawberries were planted in the number of 980 for each treatment. The heating energy consumption was compared between November 8, 2017 and March 30, 2018. Accumulated power consumption is converted to integrated kerosene consumption. The converted kerosene consumption is 1,320L(100%) for space $8^{\circ}C$ heating, 928L(70.3%) for space $4^{\circ}C$ + crown heating, 1,161L($88^{\circ}C$) for space $6^{\circ}C$ + crown heating). It was analyzed that space $4^{\circ}C$ + pipe heating and space $6^{\circ}C$ + crown heating save heating energy of 29.7% and 12% respectively compared to $8^{\circ}C$ space heating(control).