• Title/Summary/Keyword: Energy savings

Search Result 579, Processing Time 0.028 seconds

A Study on the Optimal Management Option of the Disposal of Resources Found in Standard Plastic Garbage Bags (종량제봉투 내 폐자원에 대한 최적 처리방안 연구)

  • Park, Sang Jun;Kim, Eui Yong
    • Resources Recycling
    • /
    • v.23 no.5
    • /
    • pp.44-54
    • /
    • 2014
  • A standard plastic garbage bag which was discarded from Incheon Metropolitan City was composed of 4.5% recyclable resources (aluminum cans 0.2%, steel cans 2.5%, glass 1.8%), 92.5% resources with recoverable energy (papers 23.0%, plastics 15.5%, combustible etc. 54.0%) and 3.0% non-combustible etc. Recycling is more effective than landfilling for aluminum cans, steel cans, and glass. The energy recovery process using solid refuse fuel (SRF) is more effective than incineration for papers and plastics. Incineration is more effective than recycling for combustible etc. 2,068,948 Million Btu of total energy savings and 21,008 $MTCO_2E$ of total GHG reductions were obtained by the application of the proposed scheme. The total energy savings were equivalent to an economic benefit of 422 billion won per year. The total GHG reductions were equivalent to a GHG benefit of 4,119 passenger cars not running per year. The lower calorific value of the combustible materials was obtained to be 1,936 kcal/kg of papers, 5,079 kcal/kg of plastics and 2,462 kcal/kg of combustible other resources, respectively. If papers and plastics are properly mixed, the mixture can be used as SRF. The lower calorific value of combustible other resources does not meet the quality criteria for refuse derived fuel, therefore its components are inappropriate to used as solid refuse fuel.

Design of an Intelligent Streetlight System in USN

  • Oh, Sun Jin
    • International Journal of Advanced Culture Technology
    • /
    • v.2 no.2
    • /
    • pp.1-6
    • /
    • 2014
  • In this paper, we propose an intelligent streetlight system that has a complex sensor module of temperature, humidity, luminance and motion detection and controlled by the fuzzy logic based central monitoring system in order to get flexible and precise manipulation of the streetlight system in USN environment. The proposed streetlight system provides low power consumption and high efficiency by using sensed data from the complex sensor module, which were collected, processed, and analyzed by the fuzzy logic based central monitoring system. The performance of the proposed streetlight system is to be evaluated by a simulation study in terms of power savings and safety at the fields constructed as a test-bed under several suggested scenarios. Finally, we know that the proposed intelligent streetlight system can maximize the energy savings efficiently with the fuzzy logic based central monitoring system and selective remote dimming control by connecting it to the wireless ubiquitous sensor network (USN) using a Zigbee module.

Aeroassisted Orbital Maneuvering in a Worst-Case Atmosphere (최악의 대기 조건 하의 공기조력 비행선 운전)

  • Lee, Byoungsoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.10
    • /
    • pp.936-941
    • /
    • 2000
  • Advanced space transportation systems, such as the National Aerospace Plane or an Orbital Transfer Vehicle, have atmospheric maneuvering capabilities. For such vehicles the use of aeroassisted orbital transfer from a high Earth orbit to a low Earth orbit, with unpowered flight in the atmosphere, has the potential for significant fuel savings compared to exoatmospheric Hohmann transfer. However, to exploit the fuel savings that can be achieved by using the Earths atmosphere to reduce the vehicles energy, a guidance law is required, and it must be able to handle large unpredictable fluctuations in atmospheric density, on the order of ${\pm}$50% relative to the 1962 US Standard Atmosphere. In this paper aeroassisted orbital transfer is considered as a differential game, with Nature controlling the atmosphere density to yield a worst case (min-max fuel required) atmosphere, from which the guaranteed playable set boundary are achieved. Inside the playable set, it is guaranteed that the vehicle achieves the optimal atmospheric exit condition for the minimum fuel consumption regardless of the atmospheric density variations.

  • PDF

Calculating the Optimal Capacity of Battery Storage System for Power System in Je-Ju (제주지역 전력계통에 설치되는 배터리 저장장치의 최적용량 산정)

  • Lee, Jong-Hyun;Nam, Young-Woo;Ko, Won-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.8-14
    • /
    • 2010
  • In this Paper, optimal capacity of battery storage in Je-Ju is calculated. First, Electricity demand data of Je-Ju('06~'16) is estimated based on real electricity demand data of Je-Ju('06~'07). Then, the 4th power supply planning is used to calculate benefits from battery storage capacity in view of maximum power savings, preventing outages savings and energy charge fee reduction. Finally, optimal battery storage capacity is suggested.

Prediction of Contrast and Lighting Energy Saivings in a Small Office Space according to Daylight Conditions (소규모 사무실공간에서 주광조건에 따른 대비효과 및 조명에너지 절약예측)

  • Kim, Soo-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.4
    • /
    • pp.35-43
    • /
    • 2004
  • Illuminance and luminous levels in a small office space due to daylight were calculated to analyze the impact of daylight on contrast and lighting energy savings. Computer simulations were performed for four blind conditions under a clear sky condition. The blind conditions significantly impacted the illuminance an4 luminance level. Visual performance scores were calculated according to the transfer function that uses absolute contrast between target and background surface. The blind condition that had 45 tilted angle toward ground provided good contrast and performance scores. Using a control algorithm of an automated daylight dimming control system lighting energy sayings were predicted. For all blind conditions minimum lighting energy was consumed.

The Study of Financing for Energy Efficiency Homes (주택 에너지효율향상을 위한 재정지원 방안에 관한 연구)

  • Park, Kihyun
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.63-68
    • /
    • 2012
  • The aim of this study is to evaluate current policies and suggest the way of overcome financial impediments to the energy efficiency function of residential buildings. Based on this analysis the paper enumerates policy recommendations for enhancing how energy efficiency is addressed in building codes and other policies for residential buildings. For achieving this goal, this study conducts the cost-benefit analysis to measure total energy savings and associated total cost. The results of study shows that the cost is greater than the benefit from 1st to 4th year but the benefit will be greater than the cost for the rest of the year. In addition, this study designs a financial support method and an implementation mechanism. Investment from the capital market will take place with the government's interest subsidy. Home retrofit will be undertaken with low interest rate with 2.5% and the return will be paid by a monthly energy bill. The results of this study provides some useful insights for the policy design, including the importance of developing information tools for providing appropriate information to households.

A Study on the Major Contituent Components & the Effect of Efficiency Improvement for the BEMS (BEMS(Building Energy Management System) 구축을 위한 주요 구성요소와 건물에너지효율등급 개선효과에 관한 연구)

  • Son, Hag-Sig
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.105-113
    • /
    • 2014
  • Currently, the energy consumption rate in buildings is approximately 28.5% of the total energy consumption in Korea. Therefore the amount of the consumption of petroleum resourses is at a worrying level of the blackout. The system of the amount of the Architectural Energy Efficiency Grade [AEEG] is in force by the government to apply the technologies of the Emissions Trading System and the Target Management System to mitigate the Green House Gases for buildings according to the climate change. On the account the mitigation of the Green House Gases and the reduction of the energy, from the view of maintenance and management, for the new and remodeling buildings should be under consideration. The author wants to present the possible ways how to improve the AEEG for the existing buildings by trying to establish the foundation of the BEMs, and by confirming the potential of the energy savings.

Policy Directions to Enhance Economic Feasibility of Agrivoltaics in Korea (영농형 태양광 경제성 제고를 위한 정책 방안)

  • Jong-Ik Kim;Sangmin Cho
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.15-25
    • /
    • 2024
  • This study analyzes the economic feasibility of agrivoltaics in South Korea. The key findings are as follows. It was ascertained that an amendment to the Farmland Act, which currently has an 8-year permit period, is necessary to ensure the economic feasibility of agrivoltaic projects. Furthermore, economic feasibility improves when agrivoltaic projects are financed, as against cases without financing. Furthermore, the availability of low-interest loans through financial support programs significantly enhances economic feasibility. Scaling up projects leads to cost savings due to economies of scale, while community-based agrivoltaic initiatives generate higher revenue through the acquisition of additional Renewable Energy Certificates. These factors can help improve the economic feasibility of agrivoltaic projects. These incentives are emphasized as they can serve as a source of funding to foster community acceptance of agrivoltaic projects.

The Development of a Energy Monitoring System based on Data Collected from Food Factories (식품공장 수집 데이터 기반 에너지 모니터링 시스템 개발)

  • Chae-Eun Yeo;Woo-jin Cho;Jae-Hoi Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.1001-1006
    • /
    • 2023
  • Globally, rising energy costs and increased energy demand are important issues for the food processing and manufacturing industries, which consume significant amounts of energy throughout the supply chain. Accordingly, there is a need for the development of a real-time energy monitoring and analysis system that can optimize energy use. In this study, a food factory energy monitoring system was proposed based on IoT installed in a food factory, including monitoring of each facility, energy supply and usage monitoring for the heat treatment process, and search functions. The system is based on the IoT sensor of the food processing plant and consists of PLC, database server, OPC-UA server, UI server, API server, and CIMON's HMI. The proposed system builds big data for food factories and provides facility-specific monitoring through collection functions, as well as energy supply and usage monitoring and search service functions for the heat treatment process. This data collection-based energy monitoring system will serve as a guide for the development of a small and medium-sized factory energy monitoring and management system for energy savings. In the future, this system can be used to identify and analyze energy usage to create quantitative energy saving measures that optimize process work.

An Economic Analysis and Consideration on the Application of Photovoltaic System for Bridge Nightscape Energy Savings at Han River in Seoul (서울시 한강교량의 태양광발전시스템 적용 시 경관조명 에너지 절약에 관한 경제성 분석 및 고찰)

  • Park, Yoon-Min;Hong, Seong-Kwan;Choi, An-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.1
    • /
    • pp.42-49
    • /
    • 2011
  • PV(Photovoltaic) system is environmentally friendly power system using solar energy in renewable energy. PV system compared to other renewable energy power generation systems is relatively easy to install, so the dissemination is increasing worldwide. Especially, BIPV(Building Integrated Photovoltaic) is a system that PV modules are installed on the building and use renewable energy. But this system is difficult to apply due to the shadow of adjacent buildings and limited installation. In this study, payback period is calculated by Retscreen 2010, that is an economic assessment software of renewable energy, on applied to the bridge of PV system. As results, this study aims at actively considering the application.