• Title/Summary/Keyword: Energy response factor

Search Result 277, Processing Time 0.029 seconds

Measurement of Linear Energy Spectra for 135 MeV/u Carbon Beams in HIMAC Using Prototype TEPC (프로토 타입 조직등가비례계수기의 중입자가속기연구소의 135 MeV/u 탄소 이온에 대한 선형에너지 스펙트럼 측정)

  • Nam, Uk-Won;Lee, Jaejin;Pyo, Jeonghyun;Park, Won-Kee;Moon, Bong-Kon;Lim, Chang Hwy;Moon, Myung Kook;Kitamure, Hisashi;Kobayashi, Shingo;Kim, Sunghwan
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.197-201
    • /
    • 2014
  • TEPC (Tissue Equivalent Proportional Counter) was usually used for high LET radiation dosimetry. We developed a prototype TEPC for micro-dosimetry in the range of $0.2{\sim}300 keV/{\mu}m$. And, the simulated site diameter of the TEPC is $2{\mu}m$, of similar size to a cell nucleus. For purposes of characterization the response for high LET radiation of the TEPC has been investigated under 135MeV/u Carbon ions in HIMAC (Heavy Ion Medical Accelerator). We determined the gas multiplication factor and measured the lineal energy spectrum [yd(y)] of 135 MeV/u Carbon ions. The value of the gas multiplication factor was 315 at 700 V bias voltage. As a result of the experiment, we could more understand the performance of the TEPC for high LET (Linear Energy Transfer) radiation. And the procedure of high LET radiation dosimetry using TEPC is established.

A novel therapeutic anti-CD55 monoclonal antibody inhibits the proliferation and metastasis of colorectal cancer cells

  • SO HEE DHO;EUN HA CHO;JI YEON LEE;SO-YOUNG LEE;SUNG HEE JUNG;LARK KYUN KIM;JAE CHEONG LIM
    • Oncology Letters
    • /
    • v.42 no.6
    • /
    • pp.2686-2693
    • /
    • 2019
  • In recent years, efforts to treat cancer by improving the immune function of patients have received a great deal of attention. As part of the immune system, complement is also under such evaluation. Among the many components of the complement system, complement decay accelerating factor (CD55 or DAF) is known to inhibit complement-mediated cell lysis. However, little is known about the role of CD55 in terms of cancer therapy. The present study aimed to demonstrate that increased levels of CD55 are strongly correlated with the progression of colorectal cancer. A novel CD55 chimeric monoclonal antibody was developed that may boost the immune response, thereby suppressing cancer. The CD55 antibody treatment activated complement and therefore suppressed the proliferation, invasion and migration of colorectal cancer cells. This tumoricidal activity is partly explained by the inflammatory response via the activation of proinflammatory cytokines. In addition, the CD55 antibody treatment synergistically enhanced the tumoricidal activity of 5-FU in colorectal cancer cells, suggesting that combined treatment may be a better strategy in colorectal cancer therapy.

Site specific fragility modification factor for mid-rise RC buildings based on plastic energy dissipation

  • Merin Mathews;B.R. Jayalekshmi;Katta Venkataramana
    • Earthquakes and Structures
    • /
    • v.27 no.4
    • /
    • pp.331-344
    • /
    • 2024
  • The performance of reinforced concrete buildings subjected to earthquake excitations depends on the structural behaviour of the superstructure as well as the type of foundation and the properties of soil on which the structure is founded. The consideration of the effects due to the interaction between the structure and soil- foundation alters the seismic response of reinforced concrete buildings subjected to earthquake motion. Evaluation of the structural response of buildings for quantitative assessment of the seismic fragility has been a demanding problem for the engineers. Present research deals with development of fragility curve for building specific vulnerability assessment based on different damage parameters considering the effect of soil-structure interaction. Incremental Dynamic Analysis of fixed base and flexible base RC building models founded on different soil conditions was conducted using finite element software. Three sets of fragility curves were developed with maximum roof displacement, inter storey drift and plastic energy dissipated as engineering demand parameters. The results indicated an increase in the likelihood of exceeding various damage limits by 10-40% for flexible base condition with soft soil profiles. Fragility curve based on energy dissipated showed a higher probability of exceedance for collapse prevention damage limit whereas for lower damage states, conventional methods showed higher probability of exceedance. With plastic energy dissipated as engineering demand parameter, it is possible to track down the intensity of earthquake at which the plastic deformation starts, thereby providing an accurate vulnerability assessment of the structure. Fragility modification factors that enable the transformation of existing fragility curves to account for Soil-Structure Interaction effects based on different damage measures are proposed for different soil conditions to facilitate a congenial vulnerability assessment for buildings with flexible base conditions.

Optimization of Home Loads scheduling in Demand Response (수요 반응에서 가정용 전력기계의 최적화된 스케쥴링 기법)

  • Kim, Tae-Wan;Lee, Sung-Jin;Lee, Sang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1407-1415
    • /
    • 2010
  • In recent years, the smart grid technique for maximizing the energy efficiency of power networks has received a great deal of attentions. In particular, the Demand Response is a core technology differentiated from the present power network under the smart grid paradigm. To minimize the electric cost and maximize users' satisfaction, this paper proposes a unique scheduling algorithm derived by using optimization where the characteristics of various home appliances are taken into account. For this goal, we represent mathematical consumption patterns of the electric loads and propose the optimal scheduling scheme based on the importance factor of each device during one day. In the simulation results, we demonstrate the effectiveness of the proposed algorithm in the viewpoint of the minimal electric costs utilizing real statistical figures.

Sensitivity analysis of mass ratio effect on settlement and seismic response of shallow foundation using numerical simulation

  • Kil-Wan Ko;Jeong-Gon Ha;Jinsun Lee;Gye-Chun Cho
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.649-664
    • /
    • 2023
  • Structural inertial interaction is a representative the effect of dynamic soil-foundation-structure interaction (SFSI), which leads to a relative displacement between soil and foundation, period lengthening, and damping increasing phenomena. However, for a system with a significantly heavy foundation, the dynamic inertia of the foundation influences and interacts with the structural seismic response. The structure-to-foundation mass ratio (MR) quantifies the distribution of mass between the structure and foundation for a structure on a shallow foundation. Although both systems exhibit the same vertical factor of safety (FSv), the MR and corresponding seismic responses attributed to the structure and foundation masses may differ. This study explored the influence of MR on the permanent deformation and seismic response of soil-foundation-structure system considering SFSI via numerical simulations. Given that numerous dimensionless parameters of SFSI described its influence on the structural seismic response, the parameters, except for MR and FSv, were fixed for the sensitivity analysis. The results demonstrated that the foundation inertia of heavier foundations induced more settlement due to sliding behavior of heavily-loaded systems. Moreover, the structural inertia of heavier structures evidently exhibited foundation rocking behavior, which results in a more elongated natural period of the structure for lightly-loaded systems.

Conceptualizing 5G's of Green Marketing for Retail Consumers and Validating the Measurement Model Through a Pilot Study

  • ANSARI, Hafiz Waqas Ahmed;FAUZI, Waida Irani Mohd;SALIMON, Maruf Gbadebo
    • Journal of Distribution Science
    • /
    • v.20 no.4
    • /
    • pp.33-50
    • /
    • 2022
  • Purpose: This pilot study aims to conceptualize a new green marketing mix for retail consumers based on Stimulus-Organism-Response (SOR) model. Moreover, it also aims to conceptualize a testable research model of new green marketing mix with consumers' green purchasing behavior, and to validate the measurement model with traditional as well as modern suggested validating techniques. Research design, data and methodology: A pilot test data from 75 respondents of retail buyers of energy-efficient electric appliances in Pakistan were tested for the confirmatory factor analysis (CFA) by examining a measurement model of the construct through different validation techniques (like Composite Reliability, McDonald's Omega (ω), rho (ρA), HTMT, etc.) as heretofore these scales were not validated through these modern methods. Results: The results revealed that the instrument has a certain degree of reliability and validity through different validating techniques. All the measurement items reach the suggested threshold values. Conclusions: Therefore, this study conceptualized an integrated framework of all the three stakeholders of the environment (government, companies, and public or consumers) to achieve environmental sustainability. Hence, future studies can extend these findings and conduct a full-scale study to establish an empirical relationship between the 5G's of green marketing for retailing businesses and consumers' green purchase behavior.

Photon Energy Dependence of the Sensitivity of LiF TLDs Loaded with Thin Material (얇은 박막을 얹은 TLD 반응감도의 광자 에너지에 대한 의존성)

  • Min Byongim J;Kim Sookil;Loh John J.K;Cho Young Kap
    • Radiation Oncology Journal
    • /
    • v.17 no.3
    • /
    • pp.256-260
    • /
    • 1999
  • Purpose : An investigation has been carried out on the factors which affect the response reading of thermoluminescent dosimeters (TLD-100) loaded with thin material in high energy Photon. The aim of the study was to assess the energy response of TLD-100 to the therapeutic ranges of photon beam. Materials and Methods : In this technique, TLD-100 (abbreviated as TLD) chips and three different thin material (Tin, Gold, and Tissue equivalent plastic plate) which mounted on the TLD chip were used in the clinical photon beam. The thickness of each metal plates was 0.1 mm and TE plastic plate was 1 mm thick. These compared with the photon energy dependence of the sensitivities of TLD (normal chip), TLD loaded with Tin or Gold plate, for the photon energy range 6 MV to 15 MV, which was of interest in radiotherapy. Results : The enhancement of surface dose in the TLD with metal plate was clearly detected. The TLD chips with a Gold plate was found to larger response by a factor of 1.83 in 10 MV photon beam with respect to normal chip. The sensitivity of TLD loaded with Tin was less than that for normal TLD and TLD loaded with Gold. The relative sensitivity of TLD loaded with metal has little energy dependence. Conclusion : The good stability and linearity with respect to monitor units of TLD loaded with metal were demonstrated by relative measurements in high energy Photon ($6\~15$ MV) beams. The TLD laminated with metals embedded system in solid water phantom is a suitable detector for relative dose measurements in a small beam size and surface dose.

  • PDF

Optimization of LC-MS/MS for the Analysis of Sulfamethoxazole by using Response Surface Analysis (반응표면분석법을 이용한 설파메톡사졸의 액체크로마토그래프-텐덤형 질량분석 최적화)

  • Bae, Hyo-Kwan;Jung, Jin-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.825-830
    • /
    • 2009
  • Pharmaceutical compounds enter the water environment through the diverse pathways. Because their concentration in the water environment was frequently detected in the level of ppt to ppb, the monitoring system should be optimized as much as possible for finding appropriate management policies and technical solutions. One Factor At a Time (OFAT) approach approximating the response with a single variable has been preferred for the optimization of LC-MS/MS operational conditions. However, it is common that variables in analytical instruments are interdependent. Therefore, the best condition could be found by using the statistical optimization method changing multiple variables at a time. In this research, response surface analysis (RSA) was applied to the LC-MS/MS analysis of emerging antibiotic compound, sulfamethoxazole, for the best sensitivity. In the screening test, fragmentation energy and collision voltage were selected as independent variables. They were changed simultaneously for the statistical optimization and a polynomial equation was fit to the data set. The correlation coefficient, $R^2$ valuerepresented 0.9947 and the error between the predicted and observed value showed only 3.41% at the random condition, fragmentation energy of 60 and collision voltage of 17 eV. Therefore, it was concluded that the model derived by RSA successfully predict the response. The optimal conditions identified by the model were fragmentation energy of 116.6 and collision voltage of 10.9 eV. This RSA can be extensively utilized for optimizing conditions of solid-phase extraction and liquid chromatography.

A REVIEW OF NEUTRON SCATTERING CORRECTION FOR THE CALIBRATION OF NEUTRON SURVEY METERS USING THE SHADOW CONE METHOD

  • KIM, SANG IN;KIM, BONG HWAN;KIM, JANG LYUL;LEE, JUNG IL
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.939-944
    • /
    • 2015
  • The calibration methods of neutron-measuring devices such as the neutron survey meter have advantages and disadvantages. To compare the calibration factors obtained by the shadow cone method and semi-empirical method, 10 neutron survey meters of five different types were used in this study. This experiment was performed at the Korea Atomic Energy Research Institute (KAERI; Daejeon, South Korea), and the calibration neutron fields were constructed using a $^{252}Californium$ ($^{252}Cf$) neutron source, which was positioned in the center of the neutron irradiation room. The neutron spectra of the calibration neutron fields were measured by a europium-activated lithium iodide scintillator in combination with KAERI's Bonner sphere system. When the shadow cone method was used, 10 single moderator-based survey meters exhibited a smaller calibration factor by as much as 3.1-9.3% than that of the semi-empirical method. This finding indicates that neutron survey meters underestimated the scattered neutrons and attenuated neutrons (i.e., the total scatter corrections). This underestimation of the calibration factor was attributed to the fact that single moderator-based survey meters have an under-ambient dose equivalent response in the thermal or thermal-dominant neutron field. As a result, when the shadow cone method is used for a single moderator-based survey meter, an additional correction and the International Organization for Standardization standard 8529-2 for room-scattered neutrons should be considered.

A Brief Review of Some Challenging Issues in Textured Piezoceramics via Templated Grain Growth Method

  • Hye-Lim Yu;Nu-Ri Ko;Woo-Jin Choi;Temesgen Tadeyos Zate;Wook Jo
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.10-15
    • /
    • 2023
  • It is well known that polycrystalline ceramics fabricated via the templated grain growth method along a desired crystallographic direction, generally along [001], exhibits enhanced piezoelectric response. Generally, the piezoelectric properties of textured ceramics depend on the degree of texture, as piezoelectric properties peak in single crystals. Therefore, understanding the relationship between the degree of texture and piezoelectric properties is fundamental. Here, we present state-of-the-art textured piezoceramics by focusing on critical issues such as the quality of templates used for texturing and proper evaluation of the degree of texture analysis. The relationship between the degree of texture and its impact on the properties of textured materials is exclusively defined by the Lotgering factor (L.F.) calculated from the X-ray diffraction profiles. Additionally, we show that L.F. is not a suitable indicator of the degree of texture, contrary to previous interpretations. This statement was further supported by the fact that the true degree of texture can be better quantified by the multiples of random distribution. This argument was justified by comparing the quantitative values of the degree of texture obtained from both methods to those of the piezoelectric charge coefficient of textured and random ceramics.