• Title/Summary/Keyword: Energy resource

Search Result 2,064, Processing Time 0.028 seconds

Evaluation of UM-LDAPS Prediction Model for Daily Ahead Forecast of Solar Power Generation (태양광 발전 예보를 위한 UM-LDAPS 예보 모형 성능평가)

  • Kim, Chang Ki;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.71-80
    • /
    • 2019
  • Daily ahead forecast is necessary for the electricity balance between load and supply due to the variability renewable energy. Numerical weather prediction is usually employed to produce the solar irradiance as well as electric power forecast for more than 12 hours forecast horizon. UM-LDAPS model is the numerical weather prediction operated by Korea Meteorological Administration and it generates the 36 hours forecast of hourly total irradiance 4 times a day. This study attempts to evaluate the model performance against the in situ measurements at 37 ground stations from January to May, 2013. Relative mean bias error, mean absolute error and root mean square error of hourly total irradiance are averaged over all ground stations as being 8.2%, 21.2% and 29.6%, respectively. The behavior of mean bias error appears to be different; positively largest in Chupoongnyeong station but negatively largest in Daegu station. The distinct contrast might be attributed to the limitation of microphysics parameterization for thick and thin clouds in the model.

Meteor-Statistical Analysis for Establishment of Jejudo Wind Resource Database (제주도 풍력자원 데이터베이스 구축을 위한 기상통계분석)

  • Kim, Hyun-Goo;Jang, Moon-Seok;Lee, Eon-Jeong
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.591-599
    • /
    • 2008
  • In order to support the development of wind farms in Jejudo, a wind resource database for Jejudo has been established using a meteor-statistical analysis of KIER(Korea Institute of Energy Research) met-mast measurements and KMA(Korea Meteorological Administration) weather data. The analysis included wind statistics, tower shading, an exposure category classification using satellite images, the effect of atmospheric stability on the wind profile exponent, and a correlation matrix of wind speed to gain an understanding of the meteorological correlation between long-term weather observation stations and short-term met-mast measurements. The wind resource database for Jejudo, is to be provided as an add-on to Google $Earth^{TM}$, which is expected to be utilized as a guideline for the selection of an appropriate reference site for long-term correction in the next wind farm development project.

A Study on Human Resource Training Plan and Status of the New Reproduction Energy Industry in Gwangju area (광주지역 신재생에너지 산업의 현황과 인력양성방안에 관한 연구임)

  • Yim, Ki-Heung
    • Journal of Digital Convergence
    • /
    • v.8 no.4
    • /
    • pp.47-57
    • /
    • 2010
  • The purpose of this study is to suggest the effective alternative plan of the human resource training in the new reproduction energy industry, here in Gwang-Ju area. Nowadays, we, Korea is confronted with great changing moment to reform the developmental model in social situation & economical paradigms. Based on the aspect, the study showed that how suitable place to carry out the aims in Gwangju area ; first, the good equipped natural environment for activating is apt to build the new reproduction energy industry. And next, the good skilled human resource training is to get into the newly industry. According, the various policy of educating manpower for activating new reproduction energy industry need to be driven in short and long term.

  • PDF

Comparative Validation of WindCube LIDAR and Remtech SODAR for Wind Resource Assessment - Remote Sensing Campaign at Pohang Accelerator Laboratory (풍력자원평가용 윈드큐브 라이다와 렘텍 소다의 비교.검증 - 포항가속기 원격탐사 캠페인)

  • Kim, Hyun-Goo;Chyng, Chin-Wha;An, Hae-Joon;Ji, Yeong-Mi
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2011
  • The remote-sensng campaign was performed at the Pohang Accelerator Laboratory where is located in a basin 6km inland from Yeongil Bay. The campaign aimed uncertainty assessment of Remtech PA0 SODAR through a mutual comparison with WindCube LIDAR, the remote-sensing equipment for wind resource assessment. The joint observation was carried out by changing the setup for measurement heights three times over two months. The LIDAR measurement was assumed as the reference and the uncertainty of SODAR measurement was quantitatively assessed. Compared with LIDAR, the data availability of SODAR was about half. The wind speed measurement was fitted to a slope of 0.94 and $R^2$ of 0.79 to the LIDAR measurement. However, the relative standard deviation was about 17% under 150m above ground level. Therefore, the Remtech PA0 SODAR is judged to be unsuitable for the evaluation of wind resource assessment and wind turbine performance test, which require accuracy of measurement.

Practical Application of Remote-Sensing Data for Offshore Wind Resource Assessment (해상 풍력자원평가를 위한 원격탐사자료의 활용)

  • Kim, Hyun-Goo;Hwang, Hyo-Jeong;Kyong, Nam-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.319-320
    • /
    • 2008
  • This paper introduces remote-sensing data which can be practically applied for offshore wind resource assessment. Development of offshore wind energy is inevitable for Korea to achieve the national dissemination target of renewable energy, i.e., 5% uptil 2010. However, the only available offshore in-situ measurement, marine buoy data would not represent areal wind characteristics. Consequently, remote-sensing technology has been started to apply to offshore wind resource assessment and is actively developing. Among them, NCAR/NCEP reanalysis dataset, QuikSCAT blended dataset, and offshore wind retrieval from SAR imagery are briefly summarized in this paper.

  • PDF

Communication Resource Allocation Strategy of Internet of Vehicles Based on MEC

  • Ma, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.389-401
    • /
    • 2022
  • The business of Internet of Vehicles (IoV) is growing rapidly, and the large amount of data exchange has caused problems of large mobile network communication delay and large energy loss. A strategy for resource allocation of IoV communication based on mobile edge computing (MEC) is thus proposed. First, a model of the cloud-side collaborative cache and resource allocation system for the IoV is designed. Vehicles can offload tasks to MEC servers or neighboring vehicles for communication. Then, the communication model and the calculation model of IoV system are comprehensively analyzed. The optimization objective of minimizing delay and energy consumption is constructed. Finally, the on-board computing task is coded, and the optimization problem is transformed into a knapsack problem. The optimal resource allocation strategy is obtained through genetic algorithm. The simulation results based on the MATLAB platform show that: The proposed strategy offloads tasks to the MEC server or neighboring vehicles, making full use of system resources. In different situations, the energy consumption does not exceed 300 J and 180 J, with an average delay of 210 ms, effectively reducing system overhead and improving response speed.

Study of stability and evolution indexes of gobs under unloading effect in the deep mines

  • Fu, Jianxin;Song, Wei-Dong;Tan, Yu-Ye
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.439-451
    • /
    • 2018
  • The stress path characteristics of surrounding rock in the formation of gob were analysed and the unloading was solved. Taking Chengchao Iron Mine as the engineering background, the model for analysing the instability of deep gob was established based on the mechanism of stress relief in deep mining. The energy evolution law was investigated by introducing the local energy release rate index (LERR), and the energy criterion of instability of surrounding rock was established based on the cusp catastrophe theory. The results showed that the evolution equation of the local energy release energy of the surrounding rock was quartic function with one unknown and the release rate increased gradually during the mining. The calculation results showed that the gob was stable. The LERR per unit volume of the bottom structure was relatively smaller, which mean the stability was better. The LERR distribution showed that there was main energy release in the horizontal direction and energy concentration in the vertical direction which meet the characteristics of deep mining. In summary, this model could effectively calculate the stability of surrounding rock in the formation of gob. The LERR could reflect the dynamic process of energy release, transfer and dissipation which provided an important reference for the study of the stability of deep mined out area.

Evaluation of UM-LDAPS Prediction Model for Solar Irradiance by using Ground Observation at Fine Temporal Resolution (고해상도 일사량 관측 자료를 이용한 UM-LDAPS 예보 모형 성능평가)

  • Kim, Chang Ki;Kim, Hyun-Goo;Kang, Yong-Heack;Kim, Jin-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.5
    • /
    • pp.13-22
    • /
    • 2020
  • Day ahead forecast is necessary for the electricity market to stabilize the electricity penetration. Numerical weather prediction is usually employed to produce the solar irradiance as well as electric power forecast for longer than 12 hours forecast horizon. Korea Meteorological Administration operates the UM-LDAPS model to produce the 36 hours forecast of hourly total irradiance 4 times a day. This study interpolates the hourly total irradiance into 15 minute instantaneous irradiance and then compare them with observed solar irradiance at four ground stations at 1 minute resolution. Numerical weather prediction model employed here was produced at 00 UTC or 18 UTC from January to December, 2018. To compare the statistical model for the forecast horizon less than 3 hours, smart persistent model is used as a reference model. Relative root mean square error of 15 minute instantaneous irradiance are averaged over all ground stations as being 18.4% and 19.6% initialized at 18 and 00 UTC, respectively. Numerical weather prediction is better than smart persistent model at 1 hour after simulation began.

Spatial Correlation-based Resource Sharing in Cognitive Radio SWIPT Networks

  • Rong, Mei;Liang, Zhonghua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3172-3193
    • /
    • 2022
  • Cognitive radio-simultaneous wireless information and power transfer (CR-SWIPT) has attracted much interest since it can improve both the spectrum and energy efficiency of wireless networks. This paper focuses on the resource sharing between a point-to-point primary system (PRS) and a multiuser multi-antenna cellular cognitive radio system (CRS) containing a large number of cognitive users (CUs). The resource sharing optimization problem is formulated by jointly scheduling CUs and adjusting the transmit power at the cognitive base station (CBS). The effect of accessing CUs' spatial channel correlation on the possible transmit power of the CBS is investigated. Accordingly, we provide a low-complexity suboptimal approach termed the semi-correlated semi-orthogonal user selection (SC-SOUS) algorithm to enhance the spectrum efficiency. In the proposed algorithm, CUs that are highly correlated to the information decoding primary receiver (IPR) and mutually near orthogonal are selected for simultaneous transmission to reduce the interference to the IPR and increase the sum rate of the CRS. We further develop a spatial correlation-based resource sharing (SC-RS) strategy to improve energy sharing performance. CUs nearly orthogonal to the energy harvesting primary receiver (EPR) are chosen as candidates for user selection. Therefore, the EPR can harvest more energy from the CBS so that the energy utilization of the network can improve. Besides, zero-forcing precoding and power control are adopted to eliminate interference within the CRS and meet the transmit power constraints. Simulation results and analysis show that, compared with the existing CU selection methods, the proposed low-complex strategy can enhance both the achievable sum rate of the CRS and the energy sharing capability of the network.

Energy Efficiency Resource Allocation for MIMO Cognitive Radio with Multiple Antenna Spectrum Sensing

  • Ning, Bing;Yang, Shouyi;Mu, Xiaomin;Lu, Yanhui;Hao, Wanming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4387-4404
    • /
    • 2015
  • The energy-efficient design of sensing-based spectrum sharing of a multi-input and multi-output (MIMO) cognitive radio (CR) system with imperfect multiple antenna spectrum sensing is investigated in this study. Optimal resource allocation strategies, including sensing time and power allocation schemes, are studied to maximize the energy efficiency (EE) of the secondary base station under the transmit power and interference power constraints. EE problem is formulated as a nonlinear stochastic fractional programming of a nonconvex optimal problem. The EE problem is transformed into its equivalent nonlinear parametric programming and solved by one-dimension search algorithm. To reduce searching complexity, the search range was founded by demonstration. Furthermore, simulation results confirms that an optimal sensing time exists to maximize EE, and shows that EE is affected by the spectrum detection factors and corresponding constraints.