• 제목/요약/키워드: Energy recycling

검색결과 1,003건 처리시간 0.029초

효율적(效率的)인 자원순환사회 형성을 위한 자원재활용(資源再活用) 정책 고찰(考察) (Study of the Recycling Policy to Make Efficient Resource-recycling Society)

  • 류수호
    • 자원리싸이클링
    • /
    • 제18권2호
    • /
    • pp.3-15
    • /
    • 2009
  • 녹색성장 정책의 핵심 단위 과제인 "온실가스 저감"과 "자원순환형 사회" 구축을 위해서는 폐기물 에너지회수와 물질재활용을 상호 보완적이고 균형적으로 실천하는 것이 중요하다고 할 것이다. 이에 본 연구는 과거 우리나라의 외국의 관련정책, "제4차 자원재활용 기본계획"과 "폐기물에너지화 종합대책"을 살펴보고 바람직한 자원재활용정책방향을 모색해 보았다. 그 결과 우리나라의 폐기물관리정책은 선진외국과 큰 차이가 없었으나 독일은 에너지회수를 중요하게 고려하고 고도 전처리를 의무화 하고 있는 점이 달랐으며, 우리나라의 여건은 과거보다 재찰용이 더욱 어려워질 것으로 판단되었다. "제4차 자원재활용 기본계획"에서는 필름류가 실질적이고 지속가능한 재활용이 되지 않고 있는 점을 알 수 있었으며, "폐기물에너지화" 종합대책에서는 RDF/RPF 에너지 회수가 일반소각 발전과 물질재활용에 비하여 효율성이 낮음을 알수 있었다. 이러한 문제를 해결하기 위해서는 에너지 및 폐열 회수는 에너지 회수(Recovery)로 개념 정립을 하며 전 과정평가(LCA: Life Cycle Assessment) 체계를 구축하는 등 제도적인 정비와 함께 필름류 합성수지를 용해하여 분자합성수지를 추출하는 기술 등의 기술개발도 필요함을 알수 있었다.

Low-Power Voltage Converter Using Energy Recycling Capacitor Array

  • Shah, Syed Asmat Ali;Ragheb, A.N.;Kim, HyungWon
    • Journal of information and communication convergence engineering
    • /
    • 제15권1호
    • /
    • pp.62-71
    • /
    • 2017
  • This paper presents a low-power voltage converter based on a reconfigurable capacitor array. Its energy recycling capacitor array stores the energy during a charge stage and supplies the voltage during an energy recycle stage even after the power source is disconnected. The converter reconfigures the capacitor array step-wise to boost the lost voltage level during the energy recycle stage. Its energy saving is particularly effective when most of the energy remaining in the charge capacitors is wasted by the leakage current during a longer sleep period. Simulations have been conducted using a voltage source of 500 mV to supply a $V_{DD}$ of around 800 mV to a load circuit consisting of four 32-bit adders in a 65-nm CMOS process. Results demonstrate energy recycling efficiency of 85.86% and overall energy saving of 40.14% compared to a conventional converter, when the load circuit is shortly active followed by a long sleep period.

폐지 재활용 기준 및 재활용 단계 설정에 관한 연구 (A Study on the Determination of Recycling Standard and Stage in Paper Scrap)

  • 민달기;서광석
    • 한국환경보건학회지
    • /
    • 제39권3호
    • /
    • pp.248-255
    • /
    • 2013
  • Objectives: The purpose of this paper is to define the level of recycling standards and its process in paper scrap. As pollution is increased by improperly treated paper scrap, the government has recently strengthened the management of the paper scrap. Methods: In this study, the current status of paper scrap recycling was investigated through a 2012 field survey, and the classification and recycling standards for paper scrap in developed countries and institutions were also investigated through a literature review in order to introduce optimal recycling standards. Results: As a result, the contents of contaminants were identified as the most important recycling standard, and the contents of contaminants in paper scrap was measured at less than 1.0% at most companies. The recycling standard for paper scrap was determined to be below 3% contaminants in the case of paper and 5% in the case of board. In this study, recycling stage was determined by considering regulations on resources and practices in the field. Conclusions: The recycling standard for paper scrap was determined to be below 3% and 5% contaminants for paper and board, respectively.

Preliminary Study of Energy and GHG Footprint of CFRP Recycling Method using Korea Database

  • 프티차이위본피라다;이철규;김용기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.247-250
    • /
    • 2009
  • Awareness of resource conservation and pollution prevention has been continually increasing. The proven benefits from CFRP's unique combination of light weight and high strength compare to conventional material is well suited for minimizing fuel consumption during vehicle in particular rail operation. Responding the awareness, this work intends to study CFRP's recycling method that is not only technical performance but also environmental view point. According to prior work of technical performance test, this work aims at quantifying the footprint of energy and GHG derived from the two appreciated performance of pyrolysis and acids recycling methods. The streamline LCA is the concept for systematic assessment. The boundary is scoped at the recycling activity, consequently, the data in and out from the specific target activity are obtained under the gate to gate data collection. Its function is recovery carbon fiber. To count and compare function, functional unit is set at 60% of recycling rate. Korea database is mainly source for acquiring the footprint of both. The numerical results presented that the energy footprint of acids and pyrolysis is 164.95 and 1,199.88 MJ-eq., respectively. Meantime, the GHG footprint of is 1,196.22 and 5,916.08 g CO2 eq. for acids and pyrolysis. In summary, the acids recycling method is, in regarding the environmental performance, better than pyrolysis recycling method.

  • PDF

폐플라스틱의 열화학적 재활용 기술 국내 동향 (Domestic Trends in Thermochemical Recycling Technology of Waste Plastics)

  • 노선아;민태진;김진태;한방우
    • 자원리싸이클링
    • /
    • 제32권6호
    • /
    • pp.79-89
    • /
    • 2023
  • 최근 탄소 중립 이슈와 함께 가장 많은 조명을 받고 있는 환경 문제로는 폐플라스틱 처리 문제가 있다. 폐플라스틱의 재활용 기술 중에서도 고온의 조건에서 유기물을 전환하여 원료 및 에너지로 재활용하는 열화학적 재활용 기술은 그동안 폐플라스틱에 주로 이용되어 왔던 물질재활용의 한계를 넘어선 기술로 평가 받고 있다. 열화학적 재활용 기술은 폐플라스틱을 원래 플라스틱의 원료로 재순환할 수 있는 순환경제의 핵심 기술로 부각되고 있으며 후속공정 및 최종 생산품의 활용 방법에 따라서 원료(Chemical recycling) 및 에너지(Waste to energy)로 재활용이 가능한 장점을 가지고 국내 뿐 아니라 세계적으로 주목을 받고 있다. 본 논문에서는 열화학적 재활용의 대표적인 세가지 기술인 연소, 가스화, 열분해에 대하여 살펴보고 최근 주요 기술 동향을 제시하고자 한다.

An Efficient Sulfuric Acid- and Hydrazine-based Process for Recycling Wastewater Generated From U(VI)-Contaminated Soil-Washing

  • Hyun-Kyu Lee;Byung-Moon Jun;Tack-Jin Kim;Sungbin Park;Seonggyu Choi;Jun-Young Jung;Hee-Chul Eun
    • 방사성폐기물학회지
    • /
    • 제22권2호
    • /
    • pp.159-171
    • /
    • 2024
  • This study aimed to develop an efficient recycling process for wastewater generated from soil-washing used to remediate uranium (U(VI))-contaminated soil. Under acidic conditions, U(VI) ions leached from the soil were precipitated and separated through neutralization using hydrazine (N2H4). N2H4, employed as a pH adjuster, was decomposed into nitrogen gas (N2), water (H2O), and hydrogen ions (H+) by hydrogen peroxide (H2O2). The residual N2H4 was precipitated when the pH was adjusted using sulfuric acid (H2SO4) to recycle the wastewater in the soil-washing process. This purified wastewater was reused in the soil-washing process for a total of ten cycles. The results confirmed that the soil-washing performance for U(VI)-contaminated soil was maintained when using recycled wastewater. All in all, this study proposes an efficient recycling process for wastewater generated during the remediation of U(VI)-contaminated soil.

고상법을 활용한 리튬이차전지 폐양극활물질 재활용 기술 연구 (Research on recycling technology for spent cathode materials of lithium-ion batteries using solid-state synthesis)

  • 강동훈;임주원;고민성
    • 한국표면공학회지
    • /
    • 제56권4호
    • /
    • pp.259-264
    • /
    • 2023
  • As the demand for lithium-ion batteries, a key power source in electric vehicles and energy storage systems, continues to increase for achieving global carbon neutrality, there is a growing concern about the environmental impact of disposing of spent batteries. Extensive research is underway to develop efficient recycling methods. While hydrometallurgy and pyrometallurgy methods are commonly used to recover valuable metals from spent cathode materials, they have drawbacks including hazardous waste and complex processes. Hence, alternative recycling methods that are environmentally friendly are being explored. However, recycling spent cathode materials still remains complex and energy-intensive. This study focuses on a novel approach called solid-state synthesis, which aims at regenerating the performance of spent cathode materials. The method offers a simpler process and reduces energy consumption. Optimal heat treatment conditions were identified based on experimental results, contributing to the development of sustainable recycling technologies for lithium-ion batteries.