• 제목/요약/키워드: Energy production

검색결과 5,546건 처리시간 0.036초

Prioritizing the locations for hydrogen production using a hybrid wind-solar system: A case study

  • Mostafaeipour, Ali;Jooyandeh, Erfan
    • Advances in Energy Research
    • /
    • 제5권2호
    • /
    • pp.107-128
    • /
    • 2017
  • Energy is a major component of almost all economic, production, and service activities, and rapid population growth, urbanization and industrialization have led to ever growing demand for energy. Limited energy resources and increasingly evident environmental effects of fossil fuel consumption has led to a growing awareness about the importance of further use of renewable energy sources in the countries energy portfolio. Renewable hydrogen production is a convenient method for storage of unstable renewable energy sources such as wind and solar energy for use in other place or time. In this study, suitability of 25 cities located in Iran's western region for renewable hydrogen production are evaluated by multi-criteria decision making techniques including TOPSIS, VIKOR, ELECTRE, SAW, Fuzzy TOPSIS, and also hybrid ranking techniques. The choice of suitable location for the centralized renewable hydrogen production is associated with various technical, economic, social, geographic, and political criteria. This paper describes the criteria affecting the hydrogen production potential in the study region. Determined criteria are weighted with Shannon entropy method, and Angstrom model and wind power model are used to estimate respectively the solar and wind energy production potential in each city and each month. Assuming the use of proton exchange membrane electrolyzer for hydrogen production, the renewable hydrogen production potential of each city is then estimated based on the obtained wind and solar energy generation potentials. The rankings obtained with MCDMs show that Kermanshah is the best option for renewable hydrogen production, and evaluation of renewable hydrogen production capacities show that Gilangharb has the highest capacity among the studied cities.

The water-energy-food resources and environment: Evidence from selected SAARC countries

  • Mansoor, Abdul;Sultana, Baserat;Shafique, Saima;Zaman, Khalid
    • Advances in Energy Research
    • /
    • 제6권1호
    • /
    • pp.1-15
    • /
    • 2019
  • The objective of the study is to examine the relationship between water resources, energy demand, food production, and environmental pollutants in selected SAARC nations, namely, Bangladesh, India, Pakistan, and Sri Lanka, during the period of 1990-2016. The results show that water, energy, and food (WEF) resources substantially affected air quality in the form of high mass carbon emissions, fossil fuel energy demand, methane discharges, nitrous oxide emissions, and greenhouse gas emissions in these countries. Food production and food deficit largely increase $CO_2$ emissions due to unsustainable production and malnutrition, while land use under cereal production increases $CH_4$ and $N_2O$ emissions. Electricity production escalates $CO_2$ emissions and fossil emissions across countries. The results support the carbon EKC hypothesis, while monotonic increasing function exists in case of fossil fuel energy. The study emphasizes the need to ensure environmental sustainability agenda by adopting cleaner production technologies in WEF resources.

Assessment of Energy Organizations' External Conditions in the Russian Federation: A Sector Analysis

  • Vyborova, E.N.;Salyakhova, E.A.
    • Asian Journal of Business Environment
    • /
    • 제4권2호
    • /
    • pp.17-21
    • /
    • 2014
  • Purpose - The paper analyzes basic indicators characterizing the volume of energy sector activity in the Russian Federation, Privolzhsky Federal district, Republic of Tatarstan. Research design, data, and methodology - The study analyzed data from the Privolzhsky Federal district, specifically, industrial production volume, electricity production, energy consumption, energy-balance data, capital investments, and capital investment structure. An array of data has been investigated in recent years. The dataset's dynamics were analyzed in 1998. Fixed capital investment dynamics were studied in 1946 the figures were converted to a comparable form using the index method. Trends were analyzed using multivariate statistics methods and the Statgraphics software package. Results - Hypothesis 1. There are sectoral disproportions in energy flows,taking into account the volume of electricity production and consumption. Trends in electricity production in general coincide with industrial production volume trends. Energy flows have disparities in individual territorial units, and in general. Hypothesis 2. The degree of sectoral economic stability decreases with insufficient levels of investment in fixed capital energy organizations. Conclusions - Because totalelectricity production is largely determined by fixed capital investments, the study of their trends and patterns will coordinate efforts on investment operations in this area.

국제 공동 연구를 통한 태양에너지 활용 열화학 물분해 그린 수소 생산 연구 및 E-fuel 생산 연구 동향 보고 (Hydrogen and E-Fuel Production via Thermo-chemical Water Splitting Using Solar Energy)

  • 조현석
    • 신재생에너지
    • /
    • 제20권1호
    • /
    • pp.110-115
    • /
    • 2024
  • Global sustainable energy needs and carbon neutrality goals make hydrogen a key future energy source. South Korea and Japan lead with proactive hydrogen policies, including South Korea's Hydrogen Law and Japan's strategy updates aiming for a hydrogen-centric society by 2050. A notable advance is the solar thermal chemical water-splitting cycle for green hydrogen production, spotlighted by Korea Institute of Energy Research (KIER) and Niigata University's joint initiative. This method uses solar energy to split water into hydrogen and oxygen, offering a carbon-neutral hydrogen production route. The study focuses on international collaboration in solar energy for thermochemical water-splitting and E-fuel production, highlighting breakthroughs in catalyst and reactor design to enhance solar thermal technology's commercial viability for sustainable fuel production. Collaborations, like ARENA in Australia, target global carbon emission reduction and energy system sustainability, contributing to a cleaner, sustainable energy future.