• Title/Summary/Keyword: Energy plant

Search Result 3,892, Processing Time 0.032 seconds

Safety Computer System, CPCS Design in Nuclear Power Plant (안전등급 컴퓨터, 노심보호계산기계통 설계)

  • Sohn, Se-Do;Young Suh;Kang, Byung-Heon;Shin, Ji-Tae;Chun, Chong-Son
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.502-506
    • /
    • 1994
  • The design of safety computer system is described along with the case of software design and testing in the Core Protection Calculator System (CPCS). The application of computer system in safety system requires not only hardware qualification but thorough testing on software to verify its correctness and completeness. The testing on software for CPCS is performed by comparing the outputs of two versions of code. One is implemented in assembly language and the other is in Fortran. The testing is performed in sequencial and overlapping manner. Phase I test verifies that each software module is implemented correctly by executing every branch. Phase II test verifies that the integrated software is complete, meeting its requirements specification and also the integrated system meet its requirement and timing constraints. Through these testing, the Yonggwang Nuclear Power Plant Units (YGN) 3 and 4 CPCS software is verified to be correct and complete, and the integrated system is designed as in its requirements specification.

  • PDF

System dynamics simulation of the thermal dynamic processes in nuclear power plants

  • El-Sefy, Mohamed;Ezzeldin, Mohamed;El-Dakhakhni, Wael;Wiebe, Lydell;Nagasaki, Shinya
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1540-1553
    • /
    • 2019
  • A nuclear power plant (NPP) is a highly complex system-of-systems as manifested through its internal systems interdependence. The negative impact of such interdependence was demonstrated through the 2011 Fukushima Daiichi nuclear disaster. As such, there is a critical need for new strategies to overcome the limitations of current risk assessment techniques (e.g. the use of static event and fault tree schemes), particularly through simulation of the nonlinear dynamic feedback mechanisms between the different NPP systems/components. As the first and key step towards developing an integrated NPP dynamic probabilistic risk assessment platform that can account for such feedback mechanisms, the current study adopts a system dynamics simulation approach to model the thermal dynamic processes in: the reactor core; the secondary coolant system; and the pressurized water reactor. The reactor core and secondary coolant system parameters used to develop system dynamics models are based on those of the Palo Verde Nuclear Generating Station. These three system dynamics models are subsequently validated, using results from published work, under different system perturbations including the change in reactivity, the steam valve coefficient, the primary coolant flow, and others. Moving forward, the developed system dynamics models can be integrated with other interacting processes within a NPP to form the basis of a dynamic system-level (systemic) risk assessment tool.

Comparison of X-ray computed tomography and magnetic resonance imaging to detect pest-infested fruits: A pilot study

  • Kim, Taeyun;Lee, Jaegi;Sun, Gwang-Min;Park, Byung-Gun;Park, Hae-Jun;Choi, Deuk-Soo;Ye, Sung-Joon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.514-522
    • /
    • 2022
  • Non-destructive testing (NDT) technology is a widely used inspection method for agricultural products. Compared with the conventional inspection method, there is no extensive sample preparation for NDT technology, and the sample is not damaged. In particular, NDT technology is used to inspect the internal structure of agricultural products infested by pests. The introduction and spread of pests during the import and export process can cause significant damage to the agricultural environment. Until now, pest detection in agricultural products and quarantine processes have been challenging because they used external inspection methods. However, NDT technology is advantageous in these inspection situations. In this pilot study, we investigated the feasibility of X-ray computed tomography (X-ray CT) and magnetic resonance imaging (MRI) to identify pest infestation in agricultural products. Three kinds of artificially pest-infested fruits (mango, tangerine, and chestnut) were non-destructively inspected using X-ray CT and MRI. X-ray CT was able to identify all pest infestations in fruits, while MRI could not detect the pest-infested chestnut. In addition, X-ray CT was superior to the quarantine process than MRI based on the contrast-to-noise ratio (CNR), image acquisition time, and cost. Therefore, X-ray CT is more appropriate for the pest quarantine process of fruits than MRI.

AI based complex sensor application study for energy management in WTP (정수장에서의 에너지 관리를 위한 AI 기반 복합센서 적용 연구)

  • Hong, Sung-Taek;An, Sang-Byung;Kim, Kuk-Il;Sung, Min-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.322-323
    • /
    • 2022
  • The most necessary thing for the optimal operation of a water purification plant is to accurately predict the pattern and amount of tap water used by consumers. The required amount of tap water should be delivered to the drain using a pump and stored, and the required flow rate should be supplied in a timely manner using the minimum amount of electrical energy. The short-term demand forecasting required from the point of view of energy optimization operation among water purification plant volume predictions has been made in consideration of seasons, major periods, and regional characteristics using time series analysis, regression analysis, and neural network algorithms. In this paper, we analyzed energy management methods through AI-based complex sensor applicability analysis such as LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Units), which are types of cyclic neural networks.

  • PDF

Fundamental evaluation of hydrogen behavior in sodium for sodium-water reaction detection of sodium-cooled fast reactor

  • Tomohiko Yamamoto;Atsushi Kato;Masato Hayakawa;Kazuhito Shimoyama;Kuniaki Ara;Nozomu Hatakeyama;Kanau Yamauchi;Yuhei Eda;Masahiro Yui
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.893-899
    • /
    • 2024
  • In a secondary cooling system of a sodium-cooled fast reactor (SFR), rapid detection of hydrogen due to sodium-water reaction (SWR) caused by water leakage from a heat exchanger tube of a steam generator (SG) is important in terms of safety and property protection of the SFR. For hydrogen detection, the hydrogen detectors using atomic transmission phenomenon of hydrogen within Ni-membrane were used in Japanese proto-type SFR "Monju". However, during the plant operation, detection signals of water leakage were observed even in the situation without SWR concerning temperature up and down in the cooling system. For this reason, the study of a new hydrogen detector has been carried out to improve stability, accuracy and reliability. In this research, the authors focus on the difference in composition of hydrogen and the difference between the background hydrogen under normal plant operation and the one generated by SWR and theoretically estimate the hydrogen behavior in liquid sodium by using ultra-accelerated quantum chemical molecular dynamics (UA-QCMD). Based on the estimation, dissolved H or NaH, rather than molecular hydrogen (H2), is the predominant form of the background hydrogen in liquid sodium in terms of energetical stability. On the other hand, it was found that hydrogen molecules produced by the sodium-water reaction can exist stably as a form of a fine bubble concerning some confinement mechanism such as a NaH layer on their surface. At the same time, we observed experimentally that the fine H2 bubbles exist stably in the liquid sodium, longer than previously expected. This paper describes the comparison between the theoretical estimation and experimental results based on hydrogen form in sodium in the development of the new hydrogen detector in Japan.

Application of Seawater Plant Technology for supporting the Achievement of SDGs in Tarawa, Kiribati (키리바시 타라와의 지속가능발전목표 달성 지원을 위한 해수플랜트 기술 활용)

  • Choi, Mi-Yeon;Ji, Ho;Lee, Ho-Saeng;Moon, Deok-Soo;Kim, Hyeon-Ju
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.136-143
    • /
    • 2021
  • Pacific island countries, including Kiribati, are suffering from a shortage of essential resources as well as a reduction in their living space due to sea level rise and coastal erosion from climate change, groundwater pollution and vegetation changes. Global activities to solve these problems are being progressed by the UN's efforts to implement SDGs. Pacific island countries can adapt to climate change by using abundant marine resources. In other words, seawater plants can assist in achieving SDGs #2, #6 and #7 based on SDGs #14 in these Pacific island countries. Under the auspice of Korea International Cooperation Agency (KOICA), Korea Research Institute of Ships and Ocean Engineering (KRISO) established the Sustainable Seawater Utilization Academy (SSUA) in 2016, and its 30 graduates formed the SSUA Kiribati Association in 2017. The Ministry of Oceans and Fisheries (MOF) of the Republic of Korea awarded ODA fund to the Association. By taking advantage of seawater resource and related plants, it was able to provide drinking water and vegetables to the local community from 2018 to 2020. Among the various fields of education and practice provided by SSUA, the Association hope to realize hydroponic cultivation and seawater desalination as a self-support project through a pilot project. To this end, more than 140 households are benefiting from 3-stage hydroponics, and a seawater desalination system in connection with solar power generation was installed for operation. The Association grows and supplies vegetable seedlings from the provided seedling cultivation equipment, and is preparing to convert to self-support business from next year. The satisfaction survey shows that Tarawa residents have a high degree of satisfaction with the technical support and its benefits. In the future, it is hoped that SSUA and regional associations will be distributed to neighboring island countries to support their SDGs implementations.

Absorption and Accumulation of Sr-90 by Rice and Soybean and Its Soil-to-Plant Transfer Coefficients (벼와 콩에 의한 Sr-90 흡수.축적 및 토양-작물체간 전이계수)

  • Park, Yong-Ho;Lee, Chang-Woo;Lee, Kang-Suk;Lee, Jeong-Ho;Jo, Jae-Seong;Chung, Kyu-Hoi
    • Nuclear Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.121-129
    • /
    • 1992
  • Radio-tracer experiments on the Sr-90 absorption by rice and soybean from a sandy-loam soil of pH 6.35 treated with 5.2 and 31.2Bq Sr-90 per g-soil were carried out through pot cultivations. Sr-90 absorption rates of both crops increased till the mature stage when the rates were about 1.0%. Concentrations in their whole tops, however, decreased or changed little as they grew. Sr-90 concentrations in plant parts of both crops increased with the increase of those in soil. Soil-to-plant transfer coefficients of Sr-90 for rice and soybean at mature stages ranged, on the dry weight basis, from 0.07(unpolished seed) to 3.67(lean and from 0.86(seed) to 9.26(leaf), respectively. Only the unpolished rice seed showed a significant difference in the coefficient with 0.17 in 5.2Bq treatment and 0.07 in 31.2Bq treatment. Sr-90 retention rates of the upper 15cm soil after crop harvests were about 80% Sr-90 absorptions had no effect on the plant growth and yield of the crops.

  • PDF

In Vitro Selection and Characterizations of Gamma Radiation-Induced Salt Tolerant Lines in Rice (방사선을 이용한 내염성 계통의 기내선발 및 특징)

  • Lee, In-Sok;Kim, Dong-Sub;Hyun, Do-Yoon;Lim, Yong-Pyo;Lee, Young-Il
    • Journal of Plant Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.247-252
    • /
    • 2002
  • The combination of radiation technique with an in vitro culture system was initiated to develop salt tolerant rice. We established an in vitro culture system to select tolerant lines against salt stress. NaCl tolerant cell lines were selected from the callus irradiated with gamma ray on N$_{6}$ medium with 1.5% NaCl and 2 mg/L 2,4-D. Regenerants (M$_1$) were obtained from the tolerant callus which was cultured for 30 days auxin-free medium. The M$_2$seeds were harvested from M$_1$plants on an individual plant basis. Thirty seedlings from each 450 M$_2$lines were transplanted in a field and total 5,000 M$_3$lines were harvested with an average 90 percent of fertile grain. M$_3$lines were utilized for selection of salt tolerance. Salinity-tolerant lines (225) were selected among 5,000 M$_3$lines. Of the 225 lines tested, the morphological traits of two lines (120-10 and -11) were far superior to control (Donagjinbyeo) in agromomic traits such as plant height, root length and no. of roots. Control and tolerant lines were analyzed by RAPD markers. Three polymorphic bands were presented in only tolerant lines, demonstrating a genetic difference between control and the tolerant lines. Such tolerant lines could be used as genetic resources to improve salt tolerance.e.

Kinetic Studies of CO2 Gasification by Non-isothermal Method on Fly Ash Char (비등온법에 의한 비산재 촤의 CO2 가스화 특성)

  • Kang, Suk-Hwan;Ryu, Jae-Hong;Lee, Jin-Wook;Yun, Yongseung;Kim, Gyoo Tae;Kim, Yongjeon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.493-499
    • /
    • 2013
  • For the purpose of utilizing fly ash from gasification of low rank coal, we performed the series of experiments such as pyrolysis and char-$CO_2$ gasification on fly ash by using the thermogravimetric analyzer (TGA) at non-isothermal heating conditions (10, 20 and $30^{\circ}C/min$). Pyrolysis rate has been analyzed by Kissinger method as a first order, the reliability of the model was lower because of the low content of volatile matter contained in the fly ash. The experimental results for the fly ash char-$CO_2$ gasification were analyzed by the shrinking core model, homogeneous model and random pore model and then were compared with them for the coal char-$CO_2$ gasification. The fly ash char (LG coal) with low-carbon has been successfully simulated by the homogeneous model as an activation energy of 200.8 kJ/mol. In particular, the fly ash char of KPU coal with high-carbon has been successfully described by the random pore model with the activation energy of 198.3 kJ/mol and was similar to the behavior for the $CO_2$ gasification of the coal char. As a result, the activation energy for the $CO_2$ gasification of two fly ash chars don't show a large difference, but we can confirm that the models for their $CO_2$ gasification depend on the amount of fixed carbon.

Basic performance analysis of ocean thermal energy conversion using the refrigerant mixture R32/R152a (R32/R152a 혼합냉매를 적용한 해양온도차발전의 기초성능해석)

  • Cha, Sang Won;Lee, Ho Saeng;Moon, Deok Soo;Kim, Hyeon Ju
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.502-507
    • /
    • 2014
  • In this paper, performance characteristics of cycles were studied when mixed working fluid was used for ocean thermal energy conversion (OTEC). Among the various mixed refrigerants for industrial heat-pump, R32/R152a used in ocean thermal energy conversion system. For simulations, R32/R152a were used in existing closed cycle and Kalina cycle which is used only ammonia and water as mixed refrigerant. Temperature of the warm heat source was 26 and 29 celsius degree, temperature of the cold heat source was 5 celsius degree. In results of simulation, Gross power of the closed cycle on R32 was 22kW, and efficiency of the cycle was 2.02%. When the mixed refrigerant of R32/R152a, in the ratio of 90 to 10, gross power of the closed cycle was 29.93kW, and efficiency of the cycle was 2.78%. Gross power and cycle efficiency of R32/R152a increased by 36% and 37% than those of existing single refrigerant. Additionally, the same simulations were conducted in Kalina cycle with the same various composition ratio of mixed refrigerant.