• Title/Summary/Keyword: Energy plant

Search Result 3,892, Processing Time 0.032 seconds

A Study on Combustion Characteristics of the Bio-drying SRF in 5 Ton/day Scale Combustion Boiler (5톤/일 규모의 연소보일러에서 Bio-drying 고형연료의 연소특성 연구)

  • Kim, Dong-Ju;Yoon, Young-Sik;Jeong, Bup-Mook;Park, Yeong Su;Seo, Yong-Chil;Lee, Byung-Sun
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.600-605
    • /
    • 2018
  • In this study, the combustion characteristics were investigated based on the biodrying solid recovered fuel (SRF) in a 5 Ton/day scale combustion boiler. The composition of the combustion gas containing the biodrying SRF was analyzed, the particulate matter, and its HCl content was determined with the air pollutant process test method. Mass balance, carbon balance, and combustion efficiency were calculated according to the equivalence ratio (ER) method; the energy recovery efficiency of the combustion boiler was also analyzed. The overall combustion efficiency of the biodrying SRF was 97.3 % and the energy recovery efficiency was 80.2%.

Human resource development and needs analysis for nuclear power plant deployment in Nigeria

  • Egieya, Jafaru M.;Ayo-Imoru, Ronke M.;Ewim, Daniel R.E.;Agedah, Ebisomu C.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.749-763
    • /
    • 2022
  • The fulcrum of economic development is a sustainable supply of electricity. Nigeria is plagued with blackouts, with one of the lowest per capita electricity consumption in the world (circa. 120 kWh per capita). Hence, policies have been instigated to integrate electricity generation from nuclear power plants (NPP) on or before 2027. However, a critical requirement for NPP generation is the implementation of robust human resource development (HRD) programs. This paper presents the perspective of Nigeria in assessing human resources needs over the entire NPP lifecycle following the milestone approach and employing the IAEA's Nuclear Power Human Resource (NPHR) modeling tool. Three workforce organizations are in focus including the owner/operator, regulators, and construction workers following three decades timeframe (2015-2045). The results indicate that for the study period, a maximum of approximately 9045 personnel (73% construction workers, 24% owner/operator, and 3% regulators) should be directly involved in the NPP program just before the commissioning of the third NPP in 2033. However, this number decreases by about 73% (2465 personnel including 94% operator and 6% regulator) at the end of the study timeframe. The results can potentially provide clarity and guidance in HRD decision-making programs.

Ordering of Alloy 690 Steam Generator Tubings in a Nuclear Power Plant (원자력발전소 증기발생기 Alloy 690 전열관 재료의 규칙화 반응)

  • Seong Sik Hwang;Min Jae Choi;Sung Woo Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.214-219
    • /
    • 2023
  • Considering the case in the United States where most nuclear power plants with an initial design life of 40 years continue to operate until 60 or 80 years after undergoing material soundness evaluation, it is time to plan a more robust long-term operation strategy for nuclear power plants in Korea. There are some reports that SRO/LRO might be formed when Alloy 690 is heat treated for 10,000 hours to 100,000 hours at 360 to 450 ℃. The possibility of LRO formation in Alloy 690 steam generator tubings of Kori nuclear power plant unit 1 (Kori-1) was investigated using existing research papers. The mechanism in which SRO/LRO occurred was also surveyed. Alloy 690 was found to be more likely to cause ordering than Alloy 600 in terms of alloy composition. The ordering could be evaluated through changes in material properties. However, it is difficult to evaluate it from a microstructural point of view. The likelihood of LRO in Alloy 690 of the Kori-1 plant operated at 320 ℃ for 19 years seemed to be low in terms of time and exposure temperature.

Characteristics of Unburned Material Derived from Coal-fired Power Plant Burning Low Grade Coal (저급탄 연소 석탄회의 미연물질 특성 분석)

  • Park, Ho-Young;Kim, Young-Ju;Kim, Tae-Hyung;Baek, Se-Hyun;Kim, Kyung-Soo;Jeoung, Kwon-Dal
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.68-74
    • /
    • 2012
  • Sub-bituminous coals have been used increasingly in coal-fired power plants with a proportion of over 50% in the blend with bituminous coals. As a result, the unburned material in fly ash has increased and is causing problems in utilizing the fly ash as an additive for concrete production. In this study, analysis of fly ash obtained from a 500 MWe power plant was carried out and unburned material in the fly ash found to be soot. The coals used in the plant were analyzed with CPD model to investigate the sooting potential depending on the coal type and blending ratio.

Genetic Relationship of Mono-cotyledonous Model Plant by Ionizing Irradiation (단자엽 모델 식물의 방사선원 별 처리에 따른 유전적 다형성 분석)

  • Song, Mira;Kim, Sun-Hee;Jang, Duk-Soo;Kang, Si-Yong;Kim, Jin-Baek;Kim, Sang Hoon;Ha, Bo-Keun;Kim, Dong Sub
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.23-29
    • /
    • 2012
  • In this study, we investigated the genetic variation in the general of monocot model plant (rice) in response to various ionizing irradiations including gamma-ray, ion beam and cosmic-ray. The non-irradiated and three irradiated (200 Gy of gamma-ray and 40 Gy of ion beam and cosmic-ray) plants were analyzed by AFLP technique using capillary electrophoresis with ABI3130xl genetic analyzer. The 29 primer combinations tested produced polymorphism results showing a total of 2,238 bands with fragments sizes ranged from 30 bp to 600 bp. The number of polymorphism generated by each primer combinations was varied significantly, ranging from 2 (M-CAC/E-ACG) to 158 (M-CAT/E-AGG) with an average of 77 bands. Polymorphic peaks were detected as 1,269 with an average of 44 per primer combinations. By UPGMA (Unweighted Pair Group Method using Arithmetic clustering) analysis method, the clusters were divided into non-irradiated sample and three irradiated samples at a similarity coefficient of 0.41 and three irradiation samples was subdivided into cosmic-ray and two irradiation samples (200 Gy of gamma-ray and 40 Gy of ion beam) at similarity coefficient of 0.48. Similarity coefficient values ranged from 0.41 to 0.55.

Comparative Analysis of Phenolic Compound of Mutant Lines of Sorghum (Sorghum bicolor)

  • Ye-Jin Lee;Baul Yang;Dong-Gun Kim;Sang Hoon Kim;Soon-Jae Kwon;Jae Hoon Kim;Joon-Woo Ahn;Chang-Hyu Bae;Jaihyunk Ryu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.86-86
    • /
    • 2022
  • Sorghum (Sorghum bicolor) is increasingly important as a biomass crop worldwide. Its genetic diversity provides a large range of biochemical composition suitable for various uses as bioplastics. Phenolic compounds are the main compounds of lignocellulosic residues, which can be used as a source of active components for their use in active packaging materials. In this research, we investigated the total phenolic content (TPC) and the total flavonoid content (TFC) among 60 mutant lines (early heading, high biomass and dwarfness) and their original cultivars. Sixty sorghum mutant lines were developed by treatment with gamma-ray or proton irradiation in 14 sorghum cultivars. The levels of TPC and TFC of 14 original cultivars were ranging from 3.27 to 11.54 mg/100 g and 2.39 to 6.74 mg/100 g, respectively. The TPCs of the mutant lines were ranging from 1.92 to 13.10 mg/100 g with average content of 6.35 mg/100 g. The TFCs of the mutant lines were ranging from 1.72 to 8.30 mg/100 g with average content of 4.20 mg/100 g. Three mutant lines derived from gamma-ray showed significant lower TPC and TFC than those of the original cultivar. While, five mutant lines showed significant higher TPC and TFC. These findings will be useful for the selection of sorghum genotypes with improved phenolic compounds.

  • PDF

미래형 대형풍력발전기 개발 추세 (Europe 지역의 Case Study)

  • 오철수
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.05a
    • /
    • pp.271-277
    • /
    • 1998
  • 1. Why Wind Power\ulcorner Advantages of Wind Energy : free cost, non-pollutant, free waste large unit is possible Disadvantages : intermittent of energy density limited sites Unit Capacity of various Power Plant Solar PP : 10 - 500㎾ Wind PP : 200 - 2000 ㎾ Nuclear PP 700 - 1000 MW Installation Cost of Power Plants Nuclear PP : $ 2,500/㎾ Solar PP : $ 6,000/㎾ Wind PP : $ 1.000 /kw.

  • PDF

Pathogen Associated Molecular Pattern (PAMP)-Triggered Immunity Is Compromised under C-Limited Growth

  • Park, Hyeong Cheol;Lee, Shinyoung;Park, Bokyung;Choi, Wonkyun;Kim, Chanmin;Lee, Sanghun;Chung, Woo Sik;Lee, Sang Yeol;Sabir, Jamal;Bressan, Ray A.;Bohnert, Hans J.;Mengiste, Tesfaye;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.40-50
    • /
    • 2015
  • In the interaction between plants and pathogens, carbon (C) resources provide energy and C skeletons to maintain, among many functions, the plant immune system. However, variations in C availability on pathogen associated molecular pattern (PAMP) triggered immunity (PTI) have not been systematically examined. Here, three types of starch mutants with enhanced susceptibility to Pseudomonas syringae pv. tomato DC3000 hrcC were examined for PTI. In a dark period-dependent manner, the mutants showed compromised induction of a PTI marker, and callose accumulation in response to the bacterial PAMP flagellin, flg22. In combination with weakened PTI responses in wild type by inhibition of the TCA cycle, the experiments determined the necessity of C-derived energy in establishing PTI. Global gene expression analyses identified flg22 responsive genes displaying C supply-dependent patterns. Nutrient recycling-related genes were regulated similarly by C-limitation and flg22, indicating re-arrangements of expression programs to redirect resources that establish or strengthen PTI. Ethylene and NAC transcription factors appear to play roles in these processes. Under C-limitation, PTI appears compromised based on suppression of genes required for continued biosynthetic capacity and defenses through flg22. Our results provide a foundation for the intuitive perception of the interplay between plant nutrition status and pathogen defense.