• Title/Summary/Keyword: Energy plant

Search Result 3,892, Processing Time 0.034 seconds

Evaluation of dynamic behavior of coagulation-flocculation using hydrous ferric oxide for removal of radioactive nuclides in wastewater

  • Kim, Kwang-Wook;Shon, Woo-Jung;Oh, Maeng-Kyo;Yang, Dasom;Foster, Richard I.;Lee, Keun-Young
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.738-745
    • /
    • 2019
  • Coprecipitation using hydrous ferric oxide (HFO) has been effectively used for the removal of radionuclides from radioactive wastewater. This work studied the dynamic behavior of HFO floc formation during the neutralization of acidic ferric iron in the presence of several radionuclides by using a photometric dispersion analyzer (PDA). Then the coagulation-flocculation system using HFO-anionic poly acrylamide (PAM) composite floc system was evaluated and compared in seawater and distilled water to find the effective condition to remove the target nuclides (Co-60, Mn-54, Sb-125, and Ru-106) present in wastewater generated in the severe accident of nuclear power plant like Fukushima Daiichi case. A ferric iron dosage of 10 ppm for the formation of HFO was suitable in terms of fast formation of HFO flocs without induction time, and maximum total removal yield of radioactivity from the wastewater. The settling time of HFO flocs was reduced by changing them to HFO-PAM composite floc. The optimal dosage of anionic PAM for HFO-anionic PAM floc system was approximately 1-10 ppm. The total removal yield of Mn-54, Co-60, Sb-125, Ru-106 radionuclides by the HFO-anionic PAM coagulation-flocculation system was higher in distilled water than in seawater and was more than 99%.

Impact parameter prediction of a simulated metallic loose part using convolutional neural network

  • Moon, Seongin;Han, Seongjin;Kang, To;Han, Soonwoo;Kim, Kyungmo;Yu, Yongkyun;Eom, Joseph
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1199-1209
    • /
    • 2021
  • The detection of unexpected loose parts in the primary coolant system in a nuclear power plant remains an extremely important issue. It is essential to develop a methodology for the localization and mass estimation of loose parts owing to the high prediction error of conventional methods. An effective approach is presented for the localization and mass estimation of a loose part using machine-learning and deep-learning algorithms. First, a methodology was developed to estimate both the impact location and the mass of a loose part at the same times in a real structure in which geometric changes exist. Second, an impact database was constructed through a series of impact finite-element analyses (FEAs). Then, impact parameter prediction modes were generated for localization and mass estimation of a simulated metallic loose part using machine-learning algorithms (artificial neural network, Gaussian process, and support vector machine) and a deep-learning algorithm (convolutional neural network). The usefulness of the methodology was validated through blind tests, and the noise effect of the training data was also investigated. The high performance obtained in this study shows that the proposed methodology using an FEA-based database and deep learning is useful for localization and mass estimation of loose parts on site.

Modified 𝜃 projection model-based constant-stress creep curve for alloy 690 steam generator tube material

  • Moon, Seongin;Kim, Jong-Min;Kwon, Joon-Yeop;Lee, Bong-Sang;Choi, Kwon-Jae;Kim, Min-Chul;Han, Sangbae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.917-925
    • /
    • 2022
  • Steam generator (SG) tubes in a nuclear power plant can undergo rapid changes in pressure and temperature during an accident; thus, an accurate model to predict short-term creep damage is essential. The theta (𝜃) projection method has been widely used for modeling creep-strain behavior under constant stress. However, many creep test data are obtained under constant load, so creep rupture behavior under a constant load cannot be accurately simulated due to the different stress conditions. This paper proposes a novel methodology to obtain the creep curve under constant stress using a modified 𝜃 projection method that considers the increase in true stress during creep deformation in a constant-load creep test. The methodology is validated using finite element analysis, and the limitations of the methodology are also discussed. The paper also proposes a creep-strain model for alloy 690 as an SG material and a novel creep hardening rule we call the damage-fraction hardening rule. The creep hardening rule is applied to evaluate the creep rupture behavior of SG tubes. The results of this study show its great potential to evaluate the rupture behavior of an SG tube governed by creep deformation.

Analysis of Factors Driving the Participation of Small Scale Renewable Power Providers in the Power Brokerage Market (소규모 재생발전사업자의 중개시장참여 촉진요인 분석)

  • Li, Dmitriy;Bae, Jeong Hwan
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.32-42
    • /
    • 2022
  • Rapid spread of intermittent renewable energy has amplified the instability and uncertainty of power systems. The Korea Power Exchange (KPX) promoted efficient management by opening the power brokerage market in 2019. By combining small-scale intermittent renewable energy with a flexible facility through the power brokerage market, the KPX aims to develop a virtual power plant system that will allow the conversion of existing intermittent renewable energy into collective power plants. However, the participation rate of renewable power owners in the power brokerage market is relatively low because other markets such as the small solar power contract market or the Korea Electric Power Corporation power purchase agreement are more profitable. In this study, we used a choice experiment to determine the attributes affecting the participation rate in the power brokerage market for 113 renewable power owners and estimate the value of the power brokerage market. According to the estimation results, a low smart meter installation cost, low profit variations, long contract periods, and few clearances increased the probability of participation. Moreover, the average value of the power brokerage market was estimated to be 2.63 million KRW per power owner.

Analyzing Public Preference for Community-Based Floating Photovoltaic Projects: A Discrete Choice Experiment Approach (주민참여형 수상태양광 발전사업에 대한 국민 선호도 분석: 선택실험법을 이용하여)

  • Hye Lee, Lee;JongRoul, Woo
    • Current Photovoltaic Research
    • /
    • v.10 no.4
    • /
    • pp.121-132
    • /
    • 2022
  • The need for floating photovoltaic is being emphasized to expand renewable energy but low residents' acceptance is a major obstacle to the deployment of floating photovoltaic. Using the discrete choice experiment, this study analyzed the preferences for community-based floating photovoltaic projects and proposed a method to increase the residents' acceptance of floating photovoltaic projects. The estimates of the marginal willingness to accept (MWTA) of the distance, the coverage ratio, the landscape, the project owner (public institution), and the project owner (large company) are -0.69%p/km, 0.13%p/%p, -0.57%p, -2.95%p, -1.73%p, respectively. According to the result of simulation analysis, the residents' acceptance is significantly higher when the project is operated by a public institution, with a choice probability of 58%, than when the project is operated by a private company, with a choice probability of 29%, 12% for a large and small company, respectively. In addition, as a result of the analysis of the expected returns, the results show that the closer the distance from the residence to the power plant, the higher the expected return.

Assessment of neutron-induced activation of irradiated samples in a research reactor

  • Ildiko Harsanyi;Andras Horvath;Zoltan Kis;Katalin Gmeling;Daria Jozwiak-Niedzwiedzka;Michal A. Glinicki;Laszlo Szentmiklosi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1036-1044
    • /
    • 2023
  • The combination of MCNP6 and the FISPACT codes was used to predict inventories of radioisotopes produced by neutron exposure of a sample in a research reactor. The detailed MCNP6 model of the Budapest Research Reactor and the specific irradiation geometry of the NAA channel was established, while realistic material cards were specified based on concentrations measured by PGAA and NAA, considering the precursor elements of all significant radioisotopes. The energy- and spatial distributions of the neutron field calculated by MCNP6 were transferred to FISPACT, and the resulting activities were validated against those measured using neutron-irradiated small and bulky targets. This approach is general enough to handle different target materials, shapes, and irradiation conditions. A general agreement within 10% has been achieved. Moreover, the method can also be made applicable to predict the activation properties of the near-vessel concrete of existing nuclear installations or assist in the optimal construction of new nuclear power plant units.

Comparison of Environmental Radiation Survey Analysis Results in a High Dose Rate Environment Using CZT, NaI(Tl), and LaBr3(Ce) Detectors

  • Sungyeop Joung;Wanook Ji;Eunjung Lee;Young-Yong Ji;Yoomi Choi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.543-558
    • /
    • 2023
  • Currently, Japan is undertaking a nationwide project to measure and map radioactive contamination around Fukushima, as part of the efforts to restore normalcy following the nuclear accident. The Japan Atomic Energy Agency (JAEA) manages the Fukushima Environmental Safety Center, located approximately 20 km north of the Fukushima Daiichi nuclear power plant in Minamisōma City, Fukushima Prefecture. In collaboration with the JAEA, this study involved conducting comparison experiments and analyses with radiation detectors in high radiation environments, a challenging task in Korean environments. Environmental radiation surveys were conducted using three types of detectors: CZT, NaI(Tl), and LaBr3(Ce), across two contaminated areas. Dose rate values were converted using dose rate conversion factors for each detector type, and dose rate maps were subsequently created and compared. The detectors yielded similar results, demonstrating their feasibility and reliability in high radiation environments. The findings of this study are expected to be a crucial reference for enhancing the verification and supplementation of procedures and methods in future radiation measurements and mobile surveys in high-radiation environments, using these three types of radiation instruments.

Load Control between PV Power Plants and Diesel Generators

  • Mohamed Khalil Abdalla MohamedAli;AISHA HASSAN ABDALLA HASHIM;OTHMAN KHALIFA
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.33-40
    • /
    • 2024
  • Introducing renewable energy sources, such as wind and photovoltaic arrays, in microgrids that supply remote regions with electricity represents a significant leap in electricity generation. Combining photovoltaic panels and diesel engines is one of the most common ways to supply electricity to rural communities. Such hybrid systems can reduce the cost of electricity generation in these remote power systems because they use free energy to balance the power generated by diesel engines. However, the combination of renewable energy sources and diesel engines tends to complicate the sizing and control of the entire system due to the intermittent nature of renewable energy sources. This study sought to investigate this issue in depth. It proposes a robust hybrid controller that can be used to facilitate optimum power sharing between a PV power source and diesel generators based on the dynamics of the available PV energy at any given time. The study also describes a hybrid PV-diesel power plant's essential functional parts that produce electricity for a microgrid using a renewable energy source. Power control needs to be adjusted to reduce the cost of power generation.

Analyses of Two Deep-Geological-Disposal Concepts for CANDU Spent Nuclear Fuels Using Storage Baskets

  • Jongyoul Lee;Heuijoo Choi;Changsoo Lee;Jung-Woo Kim;Sunghoon Ji;Dongkeun Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.3
    • /
    • pp.347-362
    • /
    • 2024
  • In Korea, two types of spent nuclear fuels (SNFs) are generated, pressurized light water reactor type (PWR) and pressurized heavy water reactor type (PHWR; CANDU), that differ greatly in size, decay heat, and radioactive characteristics. Technology development for the disposal of SNFs has mainly focused on PWR SNFs that are large in size and have extremely high decay heat and radioactivity. However, CANDU SNFs should be considered differently from PWR SNFs in deep geological disposal systems because their characteristics significantly differ from those of PWR SNFs in terms of their dimensions, number of SNF bundles, and handling systems in nuclear power plant sites. In this paper, after reviewing the status of the CANDU SNF disposal concept by Canada and Korea, concepts related to the direct geological disposal of CANDU SNFs were described, and two concepts were proposed based on the results of the development. The engineered barrier systems developed using these two concepts were comparatively analyzed in terms of disposal safety, disposal efficiency, and technical maturity. Based on the results of the comparative analyses, a vertical-type emplacement disposal concept was determined as a reference concept for the deep geological disposal of CANDU SNFs.

Soil-to-Plant Transfer of $^{54}Mn,\;^{60}Co,\;^{85}Sr$ and $^{137}Cs$ Deposited during the Growing Season of Potato (감자의 재배기간 중 토양에 침적한 $^{54}Mn,\;^{60}Co,\;^{85}Sr,\;^{137}Cs$의 작물체로의 전이)

  • Choi, Yong-Ho;Lim, Kwang-Muk;Jun, In;Keum, Dong-Kwon
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.3
    • /
    • pp.105-112
    • /
    • 2008
  • To measure the soil-to-plant transfer factors ($TF_a,\;m^2\;kg^{-1}$-fresh) of radionuclides deposited during the growing season of potato, a radioactive solution containing $^{54}Mn,\;^{60}Co,\;^{85}Sr$ and $^{137}Cs$ was applied to the soil surfaces in soil boxes 2 d before seeding and three different times during the plant growth. For the pre-seeding application (PSA), radionuclides were mixed with the topsoil (loamy sand and 5.2 in pH). The plant parts investigated were leaves, stems, tuber skin and tuber flesh. The $TF_a$ values of $^{54}Mn,\;^{60}Co,\;^{85}Sr$ and $^{137}Cs$ from the PSA were in the ranges of $1.9{\times}10^{-4}{\sim}1.5{\times}10^{-2}$, $1.8{\times}10^{-4}{\sim}7.5{\times}10^{-4}$, $4.0{\times}10^{-4}{\sim}1.6{\times}10^{-2}$, $1.5{\times}10^{-4}{\sim}3.9{\times}10^{-4}$ respectively, for different plant parts. The TFa values from the growing-time applications were on the whole a few times lower than those from the PSA. For $^{54}Mn,\;^{85}Sr$ and $^{137}Cs$, the $TF_a$ values from the early- or middle-growth-stage application were higher than those from the late-growth-stage application, whereas the opposite was true for $^{60}Co$. Leaves and tuber flesh had the highest and lowest $TF_a$ values, respectively, in most cases. The total uptake from soil by the four plant parts was in the range of $0.05{\sim}3.16%$. In the third year following the PSA, the $TF_a$ values of $^{54}Mn,\;^{60}Co$ and $^{137}Cs$ were $11{\sim}25%$, $21{\sim}25%$ and $38{\sim}67%$ of those in the first year, respectively, depending on the plant parts. The present results can be used for estimating the radiological impact of an acute radioactive deposition during the growing season of potato and for testing the validity of relevant food-chain models.