• Title/Summary/Keyword: Energy plant

Search Result 3,892, Processing Time 0.035 seconds

Experience in Ultrasonic Flaw Estimation and its Excavation on the Weldments of Nuclear Pressure Vessels (원전 압력용기 용접부 초음파탐상, 결함크기 평가 및 결함 수리 경험)

  • Lee, J.P.;Park, D.Y.;Lim, H.T.;Kim, B.C.;Joo, Y.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.11 no.1
    • /
    • pp.52-60
    • /
    • 1991
  • The importance and role of preservice and inservice inspection(PSI/ISI) for nuclear power plant components are intimately related to plant design, safety, reliability and operation etc.. The Korea Atomic Energy Research Institute(KAERI) has been performing PSI/ISI in Korea since the PSI of Kori nuclear power plant, unit 1 had been performed in 1977. KAERI has localized PSI/ISI technology and has done much experience in ultrasonic flaw detection, evaluation and its excavation on the weldments of large pressure vessels. The results of flaw estimation using ultrasonic examination are compared with the actual flaw sizes revealed by field excavation. KAERI's experience regarding PSI/ISI was described and some discussions were added.

  • PDF

A Study on the Performance Prediction for Small Hydro Power Plants (소수력발전소의 성능예측)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.448-451
    • /
    • 2005
  • This paper presents the methodology to analyze flow duration characteristics and performance prediction for small hydro power(SHP) plants and its application. The flow duration curvecan be decided by using monthly rainfall data at the most of the SHP sites with no useful hydrological data. It was proved that the monthly rainfall data can be characterized by using the cumulative density function of Weibull distribution and Thiessen method were adopted to decide flow duration curve at SHP plants. And, the performance prediction has been studied and development. One SHP plant was selected and performance characteristics was analyzed by using the developed technique. Primary design specfications such as design flowrate, plant capacity, operational rate and annual electricity production for the SHP plant were estimated. It was found that the methodology developed in this study can be a useful tool to predict the performance of SHP plants and candidate sites in Korea.

  • PDF

The Optimal Operation Condition and Estimation Performance for 300MW Demonstration Gasifier (300MW급 실증 가스화기의 최적 운전조건 및 성능 예측)

  • Yoo, Jeong-Seok;Koo, Ja-Hyung;Paek, Min-Su;Lee, Hwang-Jik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.368-371
    • /
    • 2008
  • The optimal operation condition of gasifier is one of the most important parameters to increase efficiency and reliability in IGCC plant. Also the prediction of the syngas composition and quantity must be predicted to carry out process design of the gasification plant. However, the gasifier process licensor are protective with information on process design and optimal gasifier design conditions. So, the most of process studies in the engineering company for gasification plant have carried out to look for key parameters and optimal design conditions using several prediction methods. In this paper, we present the estimated preliminary optimal operation condition of the 300MW Demonstration Entrain Flow Gasifier using Aspen Plus. The gasifier operation temperature considering slag flow was predicted by FactSage software and Annen Model.

  • PDF

A Study on Output Increase of Small Hypro Power using Nature Energy (자연에너지를 이용한 소수력 출력증대 방안 연구)

  • Chae, Ji-Seog;Yoon, Lee-Soo;Kim, Tae-Ho;Kim, Young-Il;Ma, Bem-Gu;Choi, Jang-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1129-1130
    • /
    • 2011
  • The output of small hydro power plant was generated less than rated output under high temperature. We Installed the artificial ventilation that blow cold wind from water supply pipe tunnel to small hydro power plant. The temperature of small hydro power has been decreased. The output of small hydro power plant has been increased from 405kW to 445kW.

  • PDF

Development for Life Assessment System for Pipes of Thermal Power Plants

  • Hyun, Jung-Seob;Heo, Jae-Sil;Kim, Doo-Young;Park, Min-Gyu
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.583-588
    • /
    • 2016
  • The high-temperature steam pipes of thermal power plants are subjected to severe conditions such as creep and fatigue due to the power plant frequently being started up and shut down. To prevent critical pipes from serious damage and possible failure, inspection methods such as computational analysis and online piping displacement monitoring have been developed. However, these methods are limited in that they cannot determine the life consumption rate of a critical pipe precisely. Therefore, we set out to develop a life assessment system, based on a three-dimensional piping displacement monitoring system, which is capable of evaluating the life consumption rate of a critical pipe. This system was installed at the "M" thermal power plant in Malaysia, and was shown to operate well in practice. The results of this study are expected to contribute to the increase safety of piping systems by minimizing stress and extending the actual life of critical piping.

Continuous Conditional Random Field Model for Predicting the Electrical Load of a Combined Cycle Power Plant

  • Ahn, Gilseung;Hur, Sun
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.2
    • /
    • pp.148-155
    • /
    • 2016
  • Existing power plants may consume significant amounts of fuel and require high operating costs, partly because of poor electrical power output estimates. This paper suggests a continuous conditional random field (C-CRF) model to predict more precisely the full-load electrical power output of a base load operated combined cycle power plant. We introduce three feature functions to model association potential and one feature function to model interaction potential. Together, these functions compose the C-CRF model, and the model is transformed into a multivariate Gaussian distribution with which the operation parameters can be modeled more efficiently. The performance of our model in estimating power output was evaluated by means of a real dataset and our model outperformed existing methods. Moreover, our model can be used to estimate confidence intervals of the predicted output and calculate several probabilities.

Performance Evaluation of the Samcheonpo Small-Hydro Power Plant (삼천포 해양소수력 성능평가)

  • Cho, Hong-Yeon;Cho, Beom-Jun;Kang, Geum-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.617-620
    • /
    • 2007
  • The performance evaluation of the Samcheonpo small-hydropower plant constructed on the October 25th,2006, was carried out focused on the turbine and generator efficiency analysis by using the measurement data. The unreasonable and unrealistic efficiency results are occurred in some periods because of the data variability, uncertainty, and measurement errors and mistakes. Whereas, the big mismatch is the tidal elevation predicted in the design processes. The difference between the measured and estimated tidal elevation is obvious during the low water period. It should be considered and checked in depth on the efficiency analysis of the planned and constructing small-hydro power plants in other coastal areas.

  • PDF

Performance Analysis of a Gas Turbine for Integrated Gasification Combined Cycle (석탄가스화 복합화력 발전용 가스터빈 성능해석)

  • Lee, J.J.;Cha, K.S.;Sohn, J.L.;Kim, T.S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.771-774
    • /
    • 2007
  • Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed with hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of the syngas to the performance of a gas turbine in a combined cycle power plant. For this purpose, a commercial gas turbine is selected and its performance characteristics are analyzed with syngas. It is found that different heating values of those fuels and chemical compositions in their combustion gases are the causes in the different performance characteristics. Also, Changing of turbine inlet Mass flow lead to change the turbine matching point, in the event the pressure ratio is changed.

  • PDF

Tide and Tidal Current Characteristics and Tidal Current Power Generation in the Uldolmok Waterway (울돌목 조석-조류 특성 및 조류발전)

  • Kang, Sok-Kuh;Yum, Ki-Dai;Lee, Kwang-Soo;Park, Jin-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.141-144
    • /
    • 2006
  • The tidal pi lot plant is being built in the Uldolmok waterway using Its strong tidal current with maximum current of about 12knots, which is revealed from the first direct observation using ADCP, on February, 2002. a serious of field observations (for example, ADCP observation was tarried out both at February 2002 and September, 2003), along with numerical modeling, have been carried out over the last several years, in order to understand the tidal dynamics and to examine the related variables according to the tidal current power plant (TCPP) operation.

  • PDF

A Study on Decommission Cost Estimation Framework with Engineering Approach (공학적 접근을 통한 해체비용 산정 프레임워크에 대한 고찰)

  • Lee, Sun Kee
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.8 no.2
    • /
    • pp.57-67
    • /
    • 2012
  • It is the sensitivity and confidentiality of nuclear power plant decommissioning cost that prevent detailed cost information to be released to the public, which causes some limitation to analyze and reuse the costs. This limitation to access cost information means that the lessons learned from preceding cost estimating may not systematically feed back into following cost estimates. As an alternative, decommissioning cost estimation framework is indispensable to reflecting available experience and knowledge for decommission costs. This study provides the cost estimation framework including data flow and structuralization based on engineering and bottom up approach to enhance decommissioning cost estimation.