• Title/Summary/Keyword: Energy modeling

Search Result 2,558, Processing Time 0.043 seconds

Design Sensitivity Studies for Statistical Energy Analysis Modeling of Construction Vehicles (통계적 에너지 해석 모델을 이용한 건설 장비 설계에 관한 연구)

  • ;Manning, Jerome E.;Tracey, Brian H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.385-390
    • /
    • 1997
  • In recent years there has been an increasing emphasis on shortening design cycles for bringing products to market. This requires the development of computer aided engineering tools which allow analysts to quickly evaluate the effect of design changes on noise, vibration, and harshness. Statistical Energy Analysis (SEA) modeling is a valuable tool for predicting noise and vibration as SEA models are inherently simpler and more robust than deterministic models. SEA modeling can be combined with design sensitivity analysis (DSA) to identify design changes which give the largest performance benefit. This paper describes SEA modeling of an equipment cab. SEA predictions are compared to test data, showing good agreement. The use of design sensitivity analysis in improving cab design is then demonstrated.

  • PDF

Comparison Results of Photovoltaic Module Performance using Simulation Model (해석모델을 이용한 태양광모듈의 성능결과 비교분석)

  • So, Jung-Hun;Yu, Byung-Gyu;Hwang, Hye-Mi;Yu, Gwon-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.4
    • /
    • pp.56-61
    • /
    • 2008
  • The modeling of PV (Photovoltaic) module is useful to perform detailed analysis of PV system performance for changing meteorological conditions, verify actual rated power of PV system sizing and determine the optimal design of PV system and components. This paper indicates a modeling approach of PV module performance in terms of meteorological conditions and identifies validity of this modeling method by comparing measured with simulated value of various PV modules using simulation model.

Modeling Method for the Force and Deformation Curve of Energy Absorbing Structures to Consider Initial Collapse Behaviour in Train Crash (열차 충돌에너지 흡수구조의 초기붕괴특성을 고려하기 위한 하중-변형 곡선 모델링 방법)

  • Kim, Joon-Wo;Koo, Jeong-Seo;Lim, Jong-Soon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.116-126
    • /
    • 2010
  • The Korean rolling stock safety regulation stipulates that the collision deceleration of a car body should be maintained under average 5g and maximum 7.5g during train collisions. One-dimensional dynamic model of a full rake train, which is made up of nonlinear springs/bars-dampers-masses, is often used to estimate the collision decelerations of car bodies in a basic design stage. By the way, the previous studies have often used some average force-deformation curve for energy absorbing structures in rolling stock. Through this study, we intended to analyse how much the collision deceleration levels are influenced by the initial peak force modeling in the one-dimensional force-deformation curve. The numerical results of the one-dimensional dynamic model for the Korean High-Speed Train show that the initial peak force modeling gives significant effect on the collision deceleration levels. Therefore the peak force modeling of the force-deformation curve should be considered in one-dimensional dynamic model of a full rake train to evaluate the article 16 of the domestic rolling stock safety regulations.

Modeling & Operating Algorithm of Hybrid Generation System with PMSG Wind Turbine, Diesel Generator and BESS (영구자석형 풍력-디젤-BESS 복합발전시스템 모델링 및 운전제어 알고리즘에 관한 연구)

  • Oh, Joon-Seok;Jeong, Ui-Yong;Park, Jong-Ho;Park, Min-Su;Kim, Jae-Eon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.724-729
    • /
    • 2016
  • Nowadays high-cost energy storage system using flywheel or secondary battery is applying to hybrid generation system with WT(Wind Turbine) and diesel generator in island areas for stable operation. This paper proposes an operating algorithm and modeling method of the hybrid generation system that can operate for variable wind speed and load, which is composed of energy storage system, variable-speed PMSG(Permanent Magnet Synchronous Generator) WT and diesel generator applied in island areas. Initially, the operating algorithm was proposed for frequency and voltage to be maintained within the proper ranges for load and wind speed changes. Also, the modeling method is proposed for variable speed PMSG WT, diesel generator and BESS(Battery Energy Storage System). The proposed operating algorithm and modeling method were applied to a typical island area. The frequency and voltage was kept within the permissible ranges and the proposed method was proven to be appropriate through simulations.