• 제목/요약/키워드: Energy load calculation

검색결과 238건 처리시간 0.025초

회피비용을 고려한 EGEAS 모형 개발과 전원개발계획의 최적화 (A Modified EGEAS Model with Avoided Cost and the Optimization of Generation Expansion Plan)

  • 이재관;홍성의
    • 경영과학
    • /
    • 제17권1호
    • /
    • pp.117-134
    • /
    • 2000
  • Pubilc utility industries including the electric utility industry are facing a new stream of privatization com-petition with the private sector and deregulation. The necewssity to solve now and in the future power supply and demand problems has been increasing through the sophisticated generation expansion plan(GEP) approach con-sidering not only KEPCo's supply-side resources but also outside resources such as non-utility generation(NUG) demand-side management (DSM). Under the environmental situation in the current electric utility industry a new approach is needed to acquire multiple resources competitively. This study presents the development of a modified electric generation expansion analysis system(EGEAS) model with avoided cost based on the existing EGEAS model which is a dynamic program to develope an optimal generation expansion plan for the electric utility. We are trying to find optimal GEP in Korea's case using our modified model and observe the difference for the level of reliabilities such as the reserve margin(RM) loss of load probability(LOLP) and expected unserved energy percent(EUEP) between the existing EGEAS model and our model. In addition we are trying to calculate avoided cost for NUG resources which is a criterion to evaluate herem and test possibility of connection calculation of avoided cost with GEP implementation using our modified model. The results of our case study are as follows. First we were able to find that the generation expansion plan and reliability measures were largely influenced by capacity size and loading status of NUG resources, Second we were able to find that avoided cost which are criteria to evaluate NUG resources could be calculated by using our modified EGEAS model with avoided cost. We also note that avoided costs were calculated by our model in connection with generation expansion plans.

  • PDF

위상차를 갖고 변화하는 자기장과 전류가 동시에 가해진 $Sm_1Ba_2Cu_3O_{7-\delta}$ Coated Conductor의 자기이력 손실 (Hysteresis Loss in a $Sm_1Ba_2Cu_3O_{7-\delta}$ Coated Conductor under Simultaneously Applied Field and Current with Phase Differences)

  • 이상무;정예현;곽기성;이준규;유재은;염도준;김호섭;하홍수;오상수
    • Progress in Superconductivity
    • /
    • 제10권2호
    • /
    • pp.92-98
    • /
    • 2009
  • The magnetic field profiles near the surface of a $Sm_1Ba_2Cu_3O_{7-\delta}$ coated conductor(CC-tape) under magnetic field and current that were applied simultaneously with phase differences ${\phi}s$ were measured using scanning Hall probe method. Measurements were carried out along the elliptic load lines with $\phi=90^{\circ}\;and\;45^{\circ}$ for some $B_{peak},\;I_{peak}$ values. From the measured field profiles, sheet current density J(x, $B_a,\;I_a$) and magnetic flux density $B_0(x,\;B_a,\;I_a)$ profiles in the CC-tape were calculated. Using these J(x, $B_a,\;I_a$) and $B_0(x,\;B_a,\;I_a)$ profiles, we estimated the hysteresis energy loss Q in the CC-tape. The estimated Qs, together with our previous results for $\phi=0^{\circ}$ from [9], were compared with theoretical values based on Brandt's calculation.

  • PDF

The CO2 Reduction Potential Calculation through the Urban Park Construction

  • Lee, Eun Yeob;Kang, Myung Soo;Kim, Jong Kon
    • KIEAE Journal
    • /
    • 제14권2호
    • /
    • pp.87-98
    • /
    • 2014
  • This study is to identify quantitatively the function of carbon dioxide emissions reduction due to temperature and energy reduction according to direct carbon dioxide storage, shade provision, and evaportanspiration of urban park. According to the result of study, landscape tree indicated high carbon dioxide storage effect compare to bush, in which broadleaf tree indicated higher storage function than coniferous tree. It is believed to be the storage of carbon dioxide can be increased by increasing the composition rate of forest plants in the urban park. According to the direct estimation result of carbon dioxide storage in terms of example area, storage of carbon dioxide is estimated to be "seoul a zone" $476,818.8kg{\cdot}CO_2/m^2yr$, "anyang b zone" $186,435.7{\cdot}CO_2/m^2yr$, "daejeon c zone" $262,826{\cdot}CO_2/m^2yr$, "kwangju d zone" $231,657.8{\cdot}CO_2/m^2yr$. The carbon dioxide storage per unit area estimated to be "seoul a zone" $3.4{\cdot}CO_2/m^2yr$, "anyang b zone" $5.0{\cdot}CO_2/m^2yr$, "daejeon c zone" $2.6{\cdot}CO_2/m^2yr$, "kwangju d zone" $5.6{\cdot}CO_2/m^2yr$. The result of indirect carbon dioxide reduction effect estimated to be "seoul a zone" $291,603.4{\cdot}CO_2/m^2yr$, "anyang b zone" $165,462.4{\cdot}CO_2/m^2yr$, "daejeon c zone" $141,719.2{\cdot}CO_2/m^2yr$, "kwangju d zone" $154,803.4{\cdot}CO_2/m^2yr$. Carbon dioxide reduction potential amount through the urban park was increased to 1.6 times to 1.8 times when calculated to the indirect effect.

원자력발전소 직류전원계통용 축전지 성능시험 분석 (Analysis of Battery Performance Test for DC Power System in Nuclear Power Plant)

  • 김대식;차한주
    • 전기학회논문지P
    • /
    • 제63권2호
    • /
    • pp.61-68
    • /
    • 2014
  • Function of battery bank stores energy for DC load in general, and DC power system of the nuclear power plant is used to supply DC loads for safety- featured instrumentation and control such as inverter, class 1E power system control and indication, and station annunciation. Class 1E DC power system must provide a power for the design basis accident conditions, and adequate capacity must be available during loss of AC power and subsequent safe shutdown of the plant. In present, batteries of Class 1E DC power system of the nuclear power plant uses lead-acid batteries. Class 1E batteries of nuclear power plants in Korea are summarized in terms of specification, such as capacity, discharge rate, bank configuration and discharge end voltage, etc. This paper summarizes standards of determining battery size for the nuclear power plant, and analyzes duty cycle for the class 1E DC power system of nuclear power plant. Then, battery cell size is calculated as 2613Ah according to the standard. In addition, this paper analyzes performance test results during past 13 years and shows performance degradation in the battery bank. Performance tests in 2001 and 2005 represent that entire battery cells do not reach the discharge-end voltage. Howeyer, the discharge-end voltage is reached in 14.7% of channel A (17 EA), 13.8% of channel B (16 EA), 5.2% of channel C (6 EA) and 16.4% of channel D (19 EA) at 2011 performance test. Based on the performance test results analysis and size calculation, battery capacity and degradation by age in Korearn nuclear power plant is discussed and would be used for new design.

고역율 PWM 매트릭스 컨버터의 개선된 순시추종 제어함수 (Improved instantaneous Following Control Function for High Power Factor PWM Matrix Converter)

  • 김광태
    • 조명전기설비학회논문지
    • /
    • 제19권3호
    • /
    • pp.35-43
    • /
    • 2005
  • 종래의 컨버터-인버터 전력변환 시스템에서 do-link를 제거하여 보다 효과적인 인버터를 만들기 위하여 매트릭스 컨버터에 관하여 연구를 하고자 한다. 따라서 매트릭스 컨버터는 에너지를 저장하는 능동소자를 갖지 않는 장점이 있으나 전원이 스위치를 통하여 직접 부하에 연결되므로 전원의 리플과 노이즈가 그대로 부하에 전달되는 결점을 갖는다. 매트릭스 컨버터는 전원을 부하에 대하여 정현적으로 스위칭해야 되며, 한편 이러한 노이즈를 제거 및 보상하는 특성과 함께 역율문제도 함께 해결해야 한다. 본 연구에서는 종래의 제시된 방법에 비하여 제어어시간을 단축시킨 제어함수를 제시한다. 제시된 제어함수는 전원에 포함된 리플과 노이즈를 스위칭하는 과정에서 자동으로 보상하며 역율 1이되게 스위칭한다. 시뮬레이션 결과와 실험결과를 함께 제시한다.

운전조건에 따른 펌프 터빈 시스템의 안정성 연구 (Reliability Investigation of a Pump-Turbine System at Various Operating Conditions)

  • 천청청;패트릭마크싱;최영도
    • 한국유체기계학회 논문집
    • /
    • 제18권3호
    • /
    • pp.46-52
    • /
    • 2015
  • Pump-turbine system is widely used by the hydropower industry for stabilizing the electrical grid in the vast growing economy of most developed countries. This study only investigates the Fluid-structure Interaction (FSI) analysis of the pump-turbine system at various operating conditions. The FSI analysis can show how reliable each component of the system is by providing the engineer with a better understanding of high stress and deformation points, which could reduce the lifespan of the pump-turbine. Pump-turbine components are categorized in two parts, pressurized static parts and movable stressed parts. The fixed parts include the spiral casing, top and bottom cover, stay vane and draft tube. The movable parts include guide vanes and impeller blades. Fine hexahedral numerical grids were used for CFD calculation and fine tetrahedral grids were used for structural analysis with imported load solution mapping greater than 90 %. The maximum equivalent stress are much smaller than the material yield stress, and the maximum equivalent stress showed an increasing tendency with the varying of operating conditions from partial to excessive at both modes. In addition, the total deformation of all the operating conditions showed a small magnitude, which have quite small influence on the structural stability. It can be conjectured that this system can be safely implemented.

개착식 전력구의 내진성능 평가 및 내진 안전성 검증 (Study on Seismic Performance Evaluation and Verification of Seismic Safety for Power Cable Tunnels)

  • 황경민;전낙현;정길영;박경성
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.439-445
    • /
    • 2020
  • 본 논문에서는 내진설계가 고려되어 있지 않은 전력구를 포함한 기설 개착식 전력구 100개소를 대상으로, 정부의 요구수준(내진 특등급, 0.22 g)을 만족하는지 확인하기 위하여 내진성능 평가를 수행하였다. 내진성능 평가 결과, 대상 전력구들은 대부분 0.3-1 g의 내진성능을 보유하고 있는 것으로 나타나, 내진 특등급 수준을 만족하였으며 내진안전성을 확보하고 있는 것으로 나타났다. 한편 응답변위법에 의한 전력구의 내진성능 평가 방법 및 결과에 대한 타당성을 확인하고, 전력구의 내진 안전성을 검증하기 위한 지진응답 해석 및 구조실험을 수행하였다. 그 결과 0.22 g 수준의 지진 하에서 응답변위법에 의한 상대변위는 지진응답 해석 결과보다 보수적이었으며, 실규모 구조실험에 의한 하중-변위 곡선 및 응답수정계수 산정 결과를 통해 전력구의 내진 안전성을 확인할 수 있었다.

Shaking table test and horizontal torsional vibration response analysis of column-supported vertical silo group silo structure

  • Li, Xuesen;Ding, Yonggang;Xu, Qikeng
    • Advances in concrete construction
    • /
    • 제12권5호
    • /
    • pp.377-389
    • /
    • 2021
  • Reinforced concrete vertical silos are universal structures that store large amounts of granular materials. Due to the asymmetric structure, heavy load, uneven storage material distribution, and the difference between the storage volume and the storage material bulk density, the corresponding earthquake is very complicated. Some scholars have proposed the calculation method of horizontal forces on reinforced concrete vertical silos under the action of earthquakes. Without considering the effect of torsional effect, this article aims to reveal the expansion factor of the silo group considering the torsional effect through experiments. Through two-way seismic simulation shaking table tests on reinforced concrete column-supported group silo structures, the basic dynamic characteristics of the structure under earthquake are obtained. Taking into account the torsional response, the structure has three types of storage: empty, half and full. A comprehensive analysis of the internal force conditions under the material conditions shows that: the different positions of the group bin model are different, the side bin displacement produces a displacement difference, and a torsional effect occurs; as the mass of the material increases, the structure's natural vibration frequency decreases and the damping ratio Increase; it shows that the storage material plays a role in reducing energy consumption of the model structure, and the contribution value is related to the stiffness difference in different directions of the model itself, providing data reference for other researchers; analyzing and calculating the model stiffness and calculating the internal force of the earthquake. As the horizontal side shift increases in the later period, the torsional effect of the group silo increases, and the shear force at the bottom of the column increases. It is recommended to consider the effect of the torsional effect, and the increase factor of the torsional effect is about 1.15. It can provide a reference for the structural safety design of column-supported silos.

표준기상 데이터와 열해석을 이용한 태양광열 모듈의 필요 냉각수량 산출 (Calculation of Required Coolant Flow Rate for Photovoltaic-thermal Module Using Standard Meteorological Data and Thermal Analysis)

  • 이천규;정효재
    • 반도체디스플레이기술학회지
    • /
    • 제21권4호
    • /
    • pp.18-22
    • /
    • 2022
  • Photovoltaics (PV) power generation efficiency is affected by meteorological factors such as temperature and wind speed. In general, it is known that the power generation amount decreases because photovoltaics panel temperature rises and the power generation efficiency decreases in summer. Photovoltaics Thermal (PVT) power generation has the ad-vantage of being able to produce heat together with power, as well as preventing the reduction in power generation efficien-cy and output due to the temperature rise of the panel. In this study, the amount of heat collected by season and time was calculated for photovoltaics thermal modules using the International Weather for Energy Calculations (IWEC) data provided by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). Based on this, we propose a method of predicting the temperature of the photovoltaics panel using thermal analysis and then calculating the flow rate of coolant to improve power generation efficiency. As the results, the photovoltaics efficiencies versus time on January, April, July, and October in Jeju of the Republic of Korea were calculated to the range of 15.06% to 17.83%, and the maxi-mum cooling load and flow rate for the photovoltaics thermal module were calculated to 121.16 W and 45 cc/min, respec-tively. Though this study, it could be concluded that the photovoltaics thermal system can be composed of up to 53 modules with targeting the Jeju, since the maximum capacity of the coolant circulation pump of the photovoltaics thermal system applied in this study is 2,400 cc/min.

한국형 기준 처분 환경에서의 PWR 사용후핵연료 처분용기의 구조적 안전성 해석 (Structural Analysis of the Canister for PWR Spent Fuels under the Korean Reference Disposal Conditions)

  • 최희주;이양;최종원;권영주
    • 방사성폐기물학회지
    • /
    • 제4권3호
    • /
    • pp.301-309
    • /
    • 2006
  • 한국형처분시스템에 이용될 가압경수로형 사용후핵연료를 위한 KDC-1 처분용기를 개발하였다. 처분용기 안전성 평가의 일환으로서 처분용기에 대한 구조적 안전성을 평가하였다. 처분용기의 구조적 안전성은 처분조건과 취급조건 2가지로 구분하여 평가하였다. 처분조건에서는 3가지 하중 조건, 정상하중 조건, 비정상 하중 조건, 암반의 움직임을 고려하였다. 처분조건에서 평가 결과 3가지 조건에 대해 모두 안전계수가 설계기준보다 컸다. 취급조건에서는 처분용기 취급 중 구조해석과 처분용기 낙하 사고시 구조해석을 수행하였다. 취급장비 고장 시나리오 평가결과 1개 혹은 2개의 취급 장치가 고장을 일으켰을 때도 취급장비를 계속 운전하는 것이 가능하였다. 처분용기 낙하 시나리오에서는 계산결과 최대 응력은 0.762 MPa 이었으며, 이 값은 주철의 항복응력과 비교하면 거의 무시할 수 있는 값이었다. 본 논문에서 제안한 KDC-1 처분용기에 대한 처분조건 및 취급조건에서의 구조해석 결과, 한국형처분시스템에서 고려하고 있는 조건에서 그 구조적 안전성을 확인하였다.

  • PDF