• 제목/요약/키워드: Energy intensity efficiency

검색결과 249건 처리시간 0.026초

에어튜브의 직경비에 따른 건타입 버너의 출구 유동특성에 관한 연구 (A Study on the Exhaust Flow Characteristics of the Gun Type Burner according to the Ratio of Airtube Diameter)

  • 고동국;윤석주
    • 한국분무공학회지
    • /
    • 제20권2호
    • /
    • pp.76-81
    • /
    • 2015
  • Swirl flow has an impact on the stabilization of the flame by the recirculation flow, improvement of the combustion efficiency. The swirl flow in the gun type burner is created by the spinner which is inside the airtube that guide the combustion air. Burner has generally the combustion device composed electronic spark plug, injection nozzle, combustion device adaptor, and spinner. These inner components change the air flow behavior passing through airtube. So, this study analyzed exhaust flow characteristics of the gun type burner according to the ratio of airtube diameter. Turbulence characteristics by the spinner was mean velocity, turbulence intensity, kinetic energy, shear stress and flattness factor of the air flow of axial direction and tangential direction from the exit of the airtube.

건타입 버너의 토출공기에 대한 선회기의 스월 수 영향 (Effect of the Swirl Number of Spinner on the Exhaust Air of the Gun Type Burner)

  • 고동국;윤석주
    • 한국분무공학회지
    • /
    • 제20권2호
    • /
    • pp.70-75
    • /
    • 2015
  • Swirl flow in the gun type burner has an impact on the stabilization of the flame, improvement of the combustion efficiency. The swirl flow is created by the spinner which is inside the airtube that guide the combustion air. Gun type burner has generally the inner devices composed electronic spark plug, injection nozzle, combustion device adaptor, and spinner. These inner components change the air flow behavior passing through airtube. So, this study conducted the measurement using by hot-wire anemometer and analyzed effect of the swirl number of spinner on the exhaust air of gun type burner. Turbulence characteristics come up in this study was mean velocity, turbulence intensity, kinetic energy, shear stress and flattness factor of the air flow with the change of the distance of axial direction and tangential direction from the exit of the airtube.

사용자 요구조도 보장 에너지 효율적 LED 조명 제어 기법 (An Energy-efficient LED Lighting Control Scheme with Provision of User Illumination Requirement)

  • 김용호;이권형;장갑석;최용훈;김훈
    • 한국통신학회논문지
    • /
    • 제36권11B호
    • /
    • pp.1383-1388
    • /
    • 2011
  • 세계적으로 온실가스 감축 정책, 전기전자제품 유해물질 사용제한 지침(RoHS: Restriction of Hazardous Substances) 등 환경 규제 제도의 본격 시행으로 전통적인 조명이 친환경 고효율 LED(Light Emitting Diode)로 빠르게 대체되고 있으며, 에너지 효율의 극대화를 위한 효과적인 조명 제어 기술이 요구되고 있다. 본 논문에서는 여러 광원으로 이루어진 LED 조명 광원의 효과적인 제어를 통해 실내의 각 위치에 따라 요구되는 조도를 만족하면서 LED 조명 시스템의 에너지 소비를 개선하는 조명제어 기법을 제안한다. 실내 각 영역별 사용자 유무, 요구조도 수치 등을 반영하여 조명제어 최적화 문제를 구성하고, 이에 관한 해를 도출하여 LED 조명의 개별 광원 광도(luminous intensity)를 효과적으로 조절한다. 이를 통해 제시되는 각 위치별 요구조도를 만족하고, LED 조명 시스템 에너지 소모를 효율적으로 감소시킨다. 모의실험 결과 제안된 방식이 기존 방식 대비 사용자 실내 점유율 증가에 따라 약 40%, 조명과 피조면 사이 높이 변화에 따라 약 24~71%의 소비전력을 절감 효과를 얻음을 보인다.

Ground motion intensity measure to evaluate seismic performance of rocking foundation system

  • Ko, Kil-Wan;Ha, Jeong-Gon
    • Earthquakes and Structures
    • /
    • 제21권6호
    • /
    • pp.563-576
    • /
    • 2021
  • The rocking foundation is effective for reducing structural seismic demand and avoiding overdesign of the foundation. It is crucial to evaluate the performance of rocking foundations because they cause plastic hinging in the soil. In this study, to derive optimized ground motion intensity measures (IMs) for rocking foundations, the efficiency of IMs correlated with engineering demand parameters (EDPs) was estimated through the coefficient determination using a physical modeling database for rocking shallow foundations. Foundation deformations, the structural horizontal drift ratio, and contribution in drift from foundation rotation and sliding were selected as crucial EDPs for the evaluation of rocking foundation systems. Among 15 different IMs, the peak ground velocity exhibited the most efficient parameters correlated with the EDPs, and it was discovered to be an efficient ground motion IM for predicting the seismic performance of rocking foundations. For vector regression, which uses two IMs to present the EDPs, the IMs indicating time features improved the efficiency of the regression curves, but the correlation was poor when these are used independently. Moreover, the ratio of the column-hinging base shear coefficient to the rocking base shear coefficient showed obvious trends for the accurate assessment of the seismic performance of rocking foundation-structure systems.

무선 전력전송을 위한 초음파 트랜스듀서 시스템 개발 Part 1: 송신소자 개발 (Development of Ultrasonic Transducer System for Wireless Power Transfer Part 1 : Transmitter Development)

  • 염우섭;황건;양우석;이성규
    • 한국소음진동공학회논문집
    • /
    • 제22권9호
    • /
    • pp.845-852
    • /
    • 2012
  • Recently, wireless power transfer technology is ready to be commercialized in consumer electronics. It draws attention from not only experts but also public because of its convenience and huge market. However, previous technologies such as magnetic resonance and induction coupling have limited applications because of its short transfer distance compared to device size and magnetic intensity limitation on the safety of body exposure. As an alternative, ultrasonic wireless power transfer technology is proposed. The ultrasonic wireless power transfer system is composed of transmitter which converts electrical energy to ultrasonic energy and receiver which converts the ultrasonic energy to the electrical energy again. This paper is focused on the development of high energy conversion efficiency of ultrasonic transmitter. Optimal transfer frequency is calculated based on the acoustic radiation and damping effect. The transmitter is designed through numerical analysis, and is manufactured to match the optimal transfer frequency with the size of 100 mm diameter, 12.2 mm thickness plate. The energy conversion efficiency of about 13.6 % at 2 m distance is obtained, experimentally. This result is quite high considered with the device size and the power transfering distance.

무선 전력전송을 위한 초음파 트랜스듀서 시스템 개발 Part 1: 송신소자 개발 (Development of ultrasonic transducer system for wireless power transfer Part 1: Transmitter development)

  • 염우섭;황건;이성규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.771-776
    • /
    • 2012
  • Recently, wireless power transfer technology is ready to be commercialized in consumer electronics. It draws attention of not only experts but also public because of its convenience and huge market. However, previous technologies such as magnetic resonance and induction coupling have limited applications because of its short transfer distance compared to device size and magnetic intensity limitation for the safety of body exposure. As an alternative, ultrasonic wireless power transfer technology is proposed. The ultrasonic wireless power transfer system is composed of transmitter which converts electrical energy to ultrasonic energy and receiver which converts the ultrasonic energy to the electrical energy again. This paper is focused on the development of high energy conversion efficiency of ultrasonic transmitter. Optimal transfer frequency is calculated based on the acoustic radiation and damping effect. The transmitter is designed through numerical analysis, and is manufactured to match the optimal transfer frequency with the size of 100mm diameter, 12.2 mm thickness plate. The energy conversion efficiency of about 13.6% at 2m distance is obtained, experimentally. This result is quite high considered with the device size and the power transfer distance.

  • PDF

Seismic multi-level optimization of dissipative re-centering systems

  • Panzera, Ivan;Morelli, Francesco;Salvatore, Walter
    • Earthquakes and Structures
    • /
    • 제18권1호
    • /
    • pp.129-145
    • /
    • 2020
  • Seismic resilience is a key feature for buildings that play a strategic role within the community. In this framework, not only the structural and non-structural elements damage but also the protracted structural dysfunction can contribute significantly to overall seismic damage and post-seismic crisis situations. Reduction of the residual and peak displacements and energy dissipation by replaceable elements are some effective aspects to pursue in order to enhance the resilience. Control systems able to adapt their response based on the nature of events, such as active or semi-active, can achieve the best results, but also require higher costs and their complexity jeopardizes their reliability; on the other hand, a passive control system is not able to adapt but its functioning is more reliable and characterized by lower costs. In this study it is proposed a strategy for the optimization of the dissipative capacity of a seismic resistant system obtained placing in parallel two different groups dissipative Re-Centering Devices, specifically designed to enhance the energy dissipation, one for the low and the other for the high intensity earthquakes. In this way the efficiency of the system in dissipating the seismic energy is kept less sensitive to the seismic intensity compared to the case of only one group of dissipative devices.

LED와 메탈핼라이드 집어등을 겸용한 오징어채낚기 어선의 조업 성능 (Operating performance of squid jigging vessel using the LED and metal halide fishing lamp combination)

  • 안희춘;배재현;배봉성;박종명
    • 수산해양기술연구
    • /
    • 제49권4호
    • /
    • pp.395-403
    • /
    • 2013
  • Fishing efficiency of the squid jigging vessel using the LED and metal halide fishing lamp combination was analyzed to reduce the cost for fishing operation utilizing the fishing light system for high degree of efficiency in the squid jigging fishery (one of the representative coastal and offshore fisheries in Korea). This study aims to improve the nature of existing LED lamps and to develop fan-shaped LED lights having 180W of power and ${\pm}45^{\circ}$ angle of light intensity distribution. The marine experiment for making a comparison of their fishing efficiency was tested by a 9.77 tons fishing vessel from Oct. through Dec. 2012. As a result, experimental fishing vessel showed slightly higher fishing efficiency than the average of metal halide lamp-equipped vessel and 20% energy savings. This means that the combination of LED and metal halide lamps would provide an efficient way to lower energy consumption while maintaining fishing efficiency.

선회 확산 화염에 관한 실험적 연구 (An Experimental Study on the Diffusion Flame with Swirl)

  • 권기린;김종진
    • 수산해양기술연구
    • /
    • 제27권3호
    • /
    • pp.184-192
    • /
    • 1991
  • In many combustion systems, swirling combustion air is extensively applied as an aid for stabilization of high intensity combustion pocesses. Swirl, generally, causes significant effects on the flow field which, in turn, determines the size, shape, and stability of flames, and combustion intensity. The purpose of this study is to investigate the effect of swirls on flames produced from a model combustor designed in this paper. In order to impart swirls to the combustion air, a movable block swirl generator was used. Temperature distribution and radiative heat flux along the centerline of the swirling flame were measured. Data obtained from these swirl flows can be used as design data for high intensity or high efficiency combustion systems. The results obtained are summarized as follows: 1. Flame temperature profiles were measured at various swirl number. 2. The axial distance for maximum temperature from the centerline of burner increased as the swirl number increased. 3. Radiative heat flux increased as the swirl number and axial distance from burner increased.

  • PDF

사무공간 적용 BIPV시스템의 자연채광 및 성능평가에 관한 연구 (A Study on Evaluation of Daylighting in Office Space Applied BIPV Systems in Accordance with Power Performance)

  • 서영석;오민석;김회서
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.148-154
    • /
    • 2009
  • By the skyscraper building, increase of skin area and expansion of curtain wall system will be the important factors of acceleration in extending supply of BIPV system. In the future interior environmental evaluation is not a necessary to the residents but an essential term which will bring enormous influence. In the interior environmental evaluation, natural light will let the residents with direct contact with outside circumstances and make them feel opened. also only the daylight has radiant energy and color rendering that will have a great influence to residents' mental, operation efficiency and advancing productivity. This research compares and analyzes BIPC system in office spaces with two general sunlight's module. In addition to natural light's efficiency for BIPC system's comfort and confirmed economical efficiency will be applied to basic research data. Hence forth, ensuring indoor intensity of illumination and controlling light system to reducing energy research data will be demanded to increase the amount of supplying BIPC system. Also continuance research in the possibility of applying BIPC system in various buildings, room temperature affected by location of windows and its condensation, and economical evaluation will be required.

  • PDF