• Title/Summary/Keyword: Energy identifying

Search Result 301, Processing Time 0.029 seconds

The Development of Gamma Energy Identifying Algorithm for Compact Radiation Sensors Using Stepwise Refinement Technique

  • Yoo, Hyunjun;Kim, Yewon;Kim, Hyunduk;Yi, Yun;Cho, Gyuseong
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.2
    • /
    • pp.91-97
    • /
    • 2017
  • Background: A gamma energy identifying algorithm using spectral decomposition combined with smoothing method was suggested to confirm the existence of the artificial radio isotopes. The algorithm is composed by original pattern recognition method and smoothing method to enhance the performance to identify gamma energy of radiation sensors that have low energy resolution. Materials and Methods: The gamma energy identifying algorithm for the compact radiation sensor is a three-step of refinement process. Firstly, the magnitude set is calculated by the original spectral decomposition. Secondly, the magnitude of modeling error in the magnitude set is reduced by the smoothing method. Thirdly, the expected gamma energy is finally decided based on the enhanced magnitude set as a result of the spectral decomposition with the smoothing method. The algorithm was optimized for the designed radiation sensor composed of a CsI (Tl) scintillator and a silicon pin diode. Results and Discussion: The two performance parameters used to estimate the algorithm are the accuracy of expected gamma energy and the number of repeated calculations. The original gamma energy was accurately identified with the single energy of gamma radiation by adapting this modeling error reduction method. Also the average error decreased by half with the multi energies of gamma radiation in comparison to the original spectral decomposition. In addition, the number of repeated calculations also decreased by half even in low fluence conditions under $10^4$ ($/0.09cm^2$ of the scintillator surface). Conclusion: Through the development of this algorithm, we have confirmed the possibility of developing a product that can identify artificial radionuclides nearby using inexpensive radiation sensors that are easy to use by the public. Therefore, it can contribute to reduce the anxiety of the public exposure by determining the presence of artificial radionuclides in the vicinity.

IDENTIFICATION OF SAFETY CONTROLS FOR ENGINEERING-SCALE PYROPROCESS FACILITY

  • MOON, SEONG-IN;SEO, SEOK-JUN;CHONG, WON-MYUNG;YOU, GIL-SUNG;KU, JEONG-HOE;KIM, HO-DONG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.915-923
    • /
    • 2015
  • Pyroprocess technology has been considered as a fuel cycle option to solve the spent fuel accumulation problems in Korea. The Korea Atomic Energy Research Institute, Daejeon, Korea has been studying pyroprocess technology, and the conceptual design of an engineering-scale pyroprocess facility, called the Reference Engineering-scale Pyroprocess Facility, has been performed on the basis of a 10 ton heavy metal throughput per year. In this paper the concept of Reference Engineering-scale Pyroprocess Facility is introduced along with its safety requirements for the protection of facility workers, collocated workers, the off-site public, and the environment. For the identification of safety structures, systems, and components and/or administrative controls, the following activities were conducted: (1) identifying hazards associated with operations; (2) identifying potential events associated with these hazards; and (3) identifying the potential preventive and/or mitigative controls that reduce the risk associated with these accident events. This study will be used to perform a safety evaluation for accidents involving any of the hazards identified, and to establish safety design policies and propose a more definite safety design.

Identifying the hysteretic energy demand and distribution in regular steel frames

  • Akbas, Bulent;Shen, Jay;Temiz, Hakan
    • Steel and Composite Structures
    • /
    • v.6 no.6
    • /
    • pp.479-491
    • /
    • 2006
  • Structures in seismic regions are designed to dissipate seismic energy input through inelastic deformations. Structural or component failure occurs when the hysteretic energy demand for a structure or component subject to an earthquake ground motion (EQGM) exceeds its hysteretic energy dissipation capacity. This paper presents a study on identifying the hysteretic energy demand and distribution throughout the height of regular steel moment resisting frames (SMRFs) subject to severe EQGMs. For this purpose, non-linear dynamic time history (NDTH) analyses were carried out on regular low-, medium-, and high-rise steel SMRFs. An ensemble of ninety EQGMs recorded on different soil types was used in the study. The results show that the hysteretic energy demand decreases from the bottom stories to the upper stories and for high-rise structures, most of the hysteretic energy is dissipated by the bottom stories. The decrease is quite significant, especially, for medium- and high-rise structures.

Importance Assessment of Multiple Microgrids Network Based on Modified PageRank Algorithm

  • Yeonwoo LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2023
  • This paper presents a comprehensive scheme for assessing the importance of multiple microgrids (MGs) network that includes distributed energy resources (DERs), renewable energy systems (RESs), and energy storage system (ESS) facilities. Due to the uncertainty of severe weather, large-scale cascading failures are inevitable in energy networks. making the assessment of the structural vulnerability of the energy network an attractive research theme. This attention has led to the identification of the importance of measuring energy nodes. In multiple MG networks, the energy nodes are regarded as one MG. This paper presents a modified PageRank algorithm to assess the importance of MGs that include multiple DERs and ESS. With the importance rank order list of the multiple MG networks, the core MG (or node) of power production and consumption can be identified. Identifying such an MG is useful in preventing cascading failures by distributing the concentration on the core node, while increasing the effective link connection of the energy flow and energy trade. This scheme can be applied to identify the most profitable MG in the energy trade market so that the deployment operation of the MG connection can be decided to increase the effectiveness of energy usages. By identifying the important MG nodes in the network, it can help improve the resilience and robustness of the power grid system against large-scale cascading failures and other unexpected events. The proposed algorithm can point out which MG node is important in the MGs power grid network and thus, it could prevent the cascading failure by distributing the important MG node's role to other MG nodes.

Analysis of Proton Nuclear Reaction-Generated Nuclides for Different Proton Energy (양성자 에너지 변화에 따른 핵반응 생성핵종 분석)

  • Lee, Samyol
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.819-824
    • /
    • 2019
  • In this study, we proposed a method for identifying isotopes generated from high-energy proton $^{nat}Pb$(p,xn) nuclear reactions through the difference of gamma rays generated through nuclear reactions using different proton energies. The experiment was performed by using a high energy proton generated from a 100 MeV proton linear accelerator of the Korea Atomic Energy Research Institute. Gamma rays generated by various nuclides generated through proton nuclear reactions were measured using a gamma-ray spectroscopy system composed of HPGe detectors. Gamma-ray standard sources were used for accurate energy calibration and efficiency measurements of HPGe gamma-ray detectors. For the proposed method, 100 and 60 MeV proton energy beams were used for the same natural lead samples. This method was found to be very effective in identifying nuclides produced by comparing gamma rays generated from the same sample with each other. The results of this study are expected to be very effective in obtaining other proton nuclear reaction results in the future.

Vital Area Identification Analysis of A Hypothetical Nuclear Facility Using VIPEX (VIPEX를 이용한 가상 원자력시설의 핵심구역 파악 분석)

  • Lee, Yoon-Hwan;Jung, Woo-Sik;Lee, Jin-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.87-95
    • /
    • 2011
  • The urgent VAI(Vital Area Identification) method development is required since 'The Act of Physical Protection and Radiological Emergency' that is established in 2003 requires an evaluation of physical threats in nuclear facilities and an establishment of physical protection in Korea. The KAERI(Korea Atomic Energy Research Institute) has developed the VAI methodology and VAI software called as VIPEX(Vital area Identification Package EXpert) for identifying the vital areas. This study is to demonstrate the applicability of KAERI's VAI methodology to a hypothetical facility, and to identify the importance of information of cable and piping runs when identifying the vital areas. It is necessarily needed to consider cable and piping runs to determine the accurate and realistic TEPS(Top Event Prevention Set). If the information of cable and piping runs of a nuclear power plant is not considered when determining the TEPSs, it is absolutely impossible to acquire the complete TEPSs, and the results could be distorted by missing it. The VIPEX and FTREX(Fault Tree Reliability Evaluation eXpert) properly calculate MCSs and TEPSs using the fault tree model, and provide the most cost-effective method to save the VAI and physical protection costs.

Optimization of Earthwork Operation for Energy-saving using Discrete Event Simulation

  • Yi, Chang-Yong;Lee, Dong-Eun
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.537-539
    • /
    • 2015
  • considerate operation is a major issue in the equipment-intensive operation. Identifying an optimal equipment combination is important to achieve low-energy operations. An Earthwork operation planning system, which measures the energy consumption of construction operations by taking into account construction equipments' engineering attributes (e.g., weight, capacity, energy consumption rate, etc.) and operation conditions (e.g., road condition, attributes of materials to be moved, geometric information, etc.), is essential to achieve the low-energy consumption. This study develops an automated computerized system which identifies an optimal earthmoving equipment fleet minimizing the energy consumption. The system imports a standard template of earthmoving operation model and compares numerous scenarios using alternative equipment allocation plans. It finds the fleet that minimizes the energy consumption by enumerating all cases using sensitivity analysis. A case study is presented to verify the validity of the system.

  • PDF

Identifying, Prioritizing, Measuring and Verifying Clean Energy Solutions for Korea's Public Building Renewable Energy Obligation Policy

  • Lee, Kwang Seob;Kang, Eun Chul;DA CUNHA, Ivor Francis;Lin, Cheng-Xian;Lee, Euy Joon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • Under the Renewable Heat Obligation (RHO) public buildings in the Republic of Korea larger than $10,000m^2$ must achieve an 11% overall reduction to thermal energy consumption. Well intended solutions have been proposed. However, not all option is evaluated on the same basis, potentially resulting in incomplete or sub-optimal solutions. What's more once projects are implemented, there are inconsistencies in the methods used to measure and evaluate operating performance of the post-retrofit case. The RETScreen decision tools and methodology can be used by decision makers, policy developers, architects, engineers and community leaders to evaluate and select the most effective solutions for Korea's RHO needs.

Construction Equipment Fleet Optimization for Saving Fuel Consumption (에너지 절감을 위한 건설장비 조합 최적화 방법 연구)

  • Yi, Chang-Yong;Lee, Hong-Chul;Lee, Dong-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.198-199
    • /
    • 2015
  • Construction equipment is a major energy consumption source in construction projects. If 10% reduction of the diesel fuel usage is achieved in the construction industry, it may reduce 5% of the total energy usage. Energy saving operation is a major issue in equipment-intensive operations (e.g., earthmoving or paving operations). Identifying optimal equipment fleet is important measure to achieve low-energy consumption in those operations. This study presents a system which finds an optimal equipment fleet by computing the low-energy performance of earthmoving operations. It establishes construction operation model and compares numerous combinations using alternative equipment allocation plans. It implements sensitivity analysis that facilitates searching the lowest energy consumption equipment fleet by enumerating all cases.

  • PDF