• Title/Summary/Keyword: Energy harvesting system

Search Result 305, Processing Time 0.033 seconds

Study on the Building Method of a Sensor Network based on BLE Beacons with WPTS (WPTS BLE 비콘 기반 센서 네트워크 구축 방안 연구)

  • Jang, Ho-Deok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.8-13
    • /
    • 2022
  • This paper investigates the method to implement a RF (Radio Frequency) energy harvesting sensor node and to build a sensor network using a CATV network and a leaky coaxial cable. The power supply of a sensor node is designed with the WPTS (Wireless Power Transfer System) receiver operating at 915MHz. A sensor network has limited coverage by the loss of RF signal at a wireless transmission link. The paper proposes to build a sensor network that the BLE signal of a sensor and the signal of a WPTS power transmitter are transmitted through a coaxial cable of a CATV network by utilizing WOC (WiFi over Coax) technology and radiates at a leaky coaxial cable. The length of a leaky coaxial cable and the total loss of a wire link are allowed to the point that the RSSI of a sensor node is more than the minimum value (-78dBm) and lead to extend wireless coverage.

Fabrication of Portable Self-Powered Wireless Data Transmitting and Receiving System for User Environment Monitoring (사용자 환경 모니터링을 위한 소형 자가발전 무선 데이터 송수신 시스템 개발)

  • Jang, Sunmin;Cho, Sumin;Joung, Yoonsu;Kim, Jaehyoung;Kim, Hyeonsu;Jang, Dayeon;Ra, Yoonsang;Lee, Donghan;La, Moonwoo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.249-254
    • /
    • 2022
  • With the rapid advance of the semiconductor and Information and communication technologies, remote environment monitoring technology, which can detect and analyze surrounding environmental conditions with various types of sensors and wireless communication technologies, is also drawing attention. However, since the conventional remote environmental monitoring systems require external power supplies, it causes time and space limitations on comfortable usage. In this study, we proposed the concept of the self-powered remote environmental monitoring system by supplying the power with the levitation-electromagnetic generator (L-EMG), which is rationally designed to effectively harvest biomechanical energy in consideration of the mechanical characteristics of biomechanical energy. In this regard, the proposed L-EMG is designed to effectively respond to the external vibration with the movable center magnet considering the mechanical characteristics of the biomechanical energy, such as relatively low-frequency and high amplitude of vibration. Hence the L-EMG based on the fragile force equilibrium can generate high-quality electrical energy to supply power. Additionally, the environmental detective sensor and wireless transmission module are composed of the micro control unit (MCU) to minimize the required power for electronic device operation by applying the sleep mode, resulting in the extension of operation time. Finally, in order to maximize user convenience, a mobile phone application was built to enable easy monitoring of the surrounding environment. Thus, the proposed concept not only verifies the possibility of establishing the self-powered remote environmental monitoring system using biomechanical energy but further suggests a design guideline.

The comparison of stand structure and tree growth btween the pasture area and the nearby deciduous forest (수목 존치 방목지와 주변 활엽수림의 임분 구조와 임목 생장 비교에 관한 연구)

  • 강성기;양희문;김지홍
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.2
    • /
    • pp.51-61
    • /
    • 2002
  • This study was conducted to investigate and compare species composition, stand structure, and growth pattern for two different sites in which silvopastoral system has been taking place. One site was the pasture area where a number of trees were removed and grasses were planted for cattle grazing, and the other site was the deciduous forest that has been established by ecological succession. The results were as follows: 1. Nine tree species were present equally in the pasture area and the deciduous forest. Of these species, seven tree species were growing in common for two sites. However, the species composition, including density and frequency, was varied by sites. 2. The number of stems per hectare in the pasture area was 71, and that in the deciduous forest was 1,433, having shown the big difference. It is estimated that, considering the growth rate, better grown trees were remained at the time of harvesting in 1996. 3. The growth of diameter, height, and basal area in the pasture area was superior to that in the nearby deciduous forest. In spite of higher values of diameter and height, the timber volume of pasture area per unit area was less than 15% of that in the deciduous forest. 4. Providing sufficient growing space, the pasture area supported higher values of diameter and height. The wider growing space also had influence on the expansion of crown of trees by the result of deliquescent growth pattern. From this point of view, more research would be needed to establish appropriate number of trees for silvopastoral system.

  • PDF

Biochemical Methane Potential of Agricultural Byproduct in Greenhouse Vegetable Crops (국내 주요 시설채소 부산물의 메탄 생산 퍼텐셜)

  • Shin, Kook-Sik;Kim, Chang-Hyun;Lee, Sang-Eun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1252-1257
    • /
    • 2011
  • Number of crop residues generated at large amount in agriculture can be utilized as substrate in methane production by anaerobic digestion. Greenhouse vegetable crop cultivation that adopting intensive agricultural system require the heating energy during winter season, meanwhile produce waste biomass source for the methane production. The purpose of this study was to investigate the methane production potential of greenhouse vegetable crop residues and to estimate material and energy yield in greenhouse system. Cucumber, tomato, and paprika as greenhouse vegetable crop were used in this study. Fallen fruit, leaf, and stem residues were collected at harvesting period from the farmhouses (Anseong, Gyeonggi, Korea) adopting an intensive greenhouse cultivation system. Also the amount of fallen vegetables and plant residues, and planting density of each vegetable crop were investigated. Chemical properties of vegetable waste biomass were determined, and theoretical methane potentials were calculated using Buswell's formula from the element analysis data. Also, BMP (Biochemical methane potential) assay was carried out for each vegetable waste biomass in mesophilic temperature ($38^{\circ}C$). Theoretical methane potential ($B_{th}$) and Ultimate methane potential ($B_u$) off stem, leaf, and fallen fruit in vegetable residues showed the range of $0.352{\sim}0.485Nm^3\;kg^{-1}VS_{added}$ and $0.136{\sim}0.354Nm^3\;kg^{-1}VS_{added}$ respectively. The biomass yields of residues of tomato, cucumber, and paprika were 28.3, 30.5, and $21.5Mg\;ha^{-1}$ respectively. The methane yields of tomato, cucumber, and paprika residues showed 645.0, 782.5, and $686.8Nm^3\;ha^{-1}$. Methane yield ($Nm^3\;ha^{-1}$) of crop residue may be highly influenced by biomass yield which is mainly affected by planting density.

Studies on the Behaviour of Radionuclides in the Soil-Plant System;1) On the Uptake of Cesium-137 by Soybean (토양(土壤)-식물계(植物界)에 대(對)한 방사성핵종(放射性核種)의 거동(擧動)에 관(關)한 연구(硏究);I. 대두작물(大豆作物)에 의(依)한 Cs-137의 흡수이행(吸收移行))

  • Ryu, Joon;Kim, Jae-Sung;Lee, Young-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.2 no.1
    • /
    • pp.30-34
    • /
    • 1983
  • The present study was carried out to determine the effect of a radionuclide, cesium-137, in soybean, which is an element released usually from nuclear facilities. Soybean plants were grown on the pots treated with cesium-137 $0.5{\sim}60{\mu}Ci/1kg$ soil and the uptake, translocation and accumulation of the radiocesium in the plant parts were measured at different growth stage. The results are summarized as follows: 1) Visual toxic symptoms on the plants due to treatment of radioactive cesium were not observed up to $60{\mu}Ci/10Kg$ soil in a pot. 2) The uptake of cesium-137 in soybean plant was increased with increment of concentration applied, while the uptake of potassium was proportionally decreased, indicating to have an ion antagonistic relationship between them. 3) The absolute amounts of cesium-137 in the plants were gradually increased by the pod setting stage, but rather reduced at harvesting stage. The accumulation occurred more in the leaves and stems than the soybean seeds. 4) The rate of uptake was ranged from 0.069 to 0.005 with proportional decrease by increasing concentration applied and the rate of Cs-137 translocation from plants to seeds was averaged 38.6% in soybean plant. The concentration coefficient was 0.04 in the soybean seeds from the pots treated with $20{\mu}Ci$ of cesium-137 and decreased with increment of cesium-137 applied.

  • PDF

Design of the Artificial Antenna System in Photosynthesis

  • Tamiaki, Hitoshi;Yagai, Shiki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.66-69
    • /
    • 2002
  • Zinc chlorin 1 possessing tertiary 3$^1$_hydroxy and 13$^1$-oxo groups was synthesized as a model for the antenna chlorophylls of photosynthetic green bacteria. Self-aggregation of 1 in nonpolar organic solvents was examined and compared to 2 and 3 possessing a secondary and primary 3$^1$_hydroxy group, respectively. Zinc chlorin 1 self-aggregated in I%(v/v) CH$_2$Cl$_2$-hexane to form oligomers and showed a red-shifted Qy maximum at 704 nm compared to the monomer (648 nm in CH$_2$CI2$_2$). This red-shift is larger than that of 3$^1$S-2 (648 to 697 nm) and comparable to that of3$^1$R-2 (648 to 705 nm), but smaller than that of 1 (648 to 740 nm), indicating that while a single 3$^1$-methyl group (primary to secondary OH) suppressed tight and/or extended aggregation, the additional 3$^1$-methyl group (secondary to tertiary OH) did not further suppress aggregation. The relative stability of the aggregates was in the order 3> 3$^1$R-2∼ 1 > 3$^1$S-2 as determined by visible spectral analyses. Molecular modeling calculations on oligomers of zinc chlorins 1, 3$^1$ R-2 and 3 gave similar well-ordered energy-minimized structures, while 3 stacked more tightly than 3$^1$ R- 2 and 1. In contrast, 3$^1$S-2 gave a relatively disordered (twisted) structure. The calculated oligomeric structures could explain the visible spectral data of 1-3 in nonpolar organic solvents. Moreover, self- aggregation of synthetic zinc 13$^1$_oxo-hlorins 4-6 possessing a 2-hydroxyethyl, 3-hydroxypropyl and 3- hydroxy-I-propenyl group at the 3-position in nonpolar organic solvents was discussed.

  • PDF

Synthesis and Characterization of Cu(In,Ga)Se2 Nanostructures by Top-down and Bottom-up Approach

  • Lee, Ji-Yeong;Seong, Won-Kyung;Moon, Myoung-Woon;Lee, Kwang-Ryeol;Yang, Cheol-Woong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.440-440
    • /
    • 2012
  • Nanomaterials have emerged as new building blocks to construct light energy harvesting assemblies. Size dependent properties provide the basis for developing new and effective systems with semiconductor nanoparticles, quantized charging effects in metal nanoparticle or their combinations in 2 and 3 dimensions for expanding the possibility of developing new strategies for photovoltaic system. As top-down approach, we developed a simple and effective method for the large scale formation of self-assembled Cu(In,Ga)$Se_2$ (CIGS) nanostructures by ion beam irradiation. The compositional changes and morphological evolution were observed as a function of the irradiation time. As the ion irradiation time increased, the nano-dots were transformed into a nano-ridge structure due to the difference in the sputtering yields and diffusion rates of each element and the competition between sputtering and diffusion processes during irradiation. As bottom-up approach, we developed the growth of CIGS nanowires using thermal-chemical vapor deposition (CVD) method. Vapor-phase synthesis is probably the most extensively explored approach to the formation of 1D nanostructures such as whiskers, nanorods, and nanowires. However, unlike binary or ternary chalcogenides, the synthesis of quaternary CIGS nanostructures is challenging because of the difficulty in controlling the stoichiometry and phase structure. We introduced a method for synthesis of the single crystalline CIGS nanowires in the form of chalcopyrite using thermal-CVD without catalyst. It was confirmed that the CIGS nanowires are epitaxially grown on a sapphire substrate, having a length ranged from 3 to 100 micrometers and a diameter from 30 to 500 nm.

  • PDF

Development of Stem-cutting Transplanter for Short-term Rotation Coppice (단기순환림 생산을 위한 삽목 이식기 개발)

  • Kim, Dong-Hwa;Kim, Dae-Cheol;Kim, Sang-Hun;Shin, Beom-Soo
    • Journal of Biosystems Engineering
    • /
    • v.35 no.1
    • /
    • pp.37-45
    • /
    • 2010
  • Since SRC (Short-term Rotation Coppice) such as poplar and willow can be harvested in three years, they are known to be a potential forest biomass as fuel for a power plant. The production system including transplanting and harvesting is, however, necessary to be mechanized because such a biomass should be handled in a massive volumetric size. A pull-type stem-cutting transplanter was developed in the research as the first step to realize the production of SRC. A needle-like transplanting device pushes a stem-cutting into the prepared soil bed by a pneumatic cylinder, and another device firms soil around a stem-cutting transplanted. Since this is an intermittent operation, it was necessary to develop a zero horizontal velocity mechanism which enabled only the transplanting needle part to continue a zero horizontal movement relative to the ground during the transplanting operation even when the tractor kept moving forward. The 2-row transplanter can transplant stem-cuttings at the rate of 6.5 seconds per row without missing a single attempt. The planting depth and distance were well maintained and controlled. Their CVs were between 2.1~3.4% and 0.87~1.7% for the depth and the distance, respectively. Although, the transplanted stem-cuttings tended to lean outward from the back-view and forward from the side view, they were planted within the range of $3^{\circ}$ from the upright position.

Mapping and Assessment of Forest Biomass Resources in Korea (우리나라 산림 바이오매스 자원량 평가 및 지도화)

  • Son, Yeong Mo;Lee, Sun Jeoung;Kim, Sowon;Hwang, Jeong Sun;Kim, Raehyun;Park, Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.3
    • /
    • pp.431-438
    • /
    • 2014
  • This study was conducted to assess forest biomass resource which is a carbon sink and a renewable resource in Korea. The total forest biomass resource potential was 804 million tons, and conifers, broadleaved forest and mixed forest accounted for 265 million tons, 282 million tons, and 257 million tons, respectively. Proportionately to regional forest stocks, biomass potential of Gangwon-do had most biomass potential, followed by Gyeongsangbuk-do and Gyeongsangnam-do. The woody biomass from the byproduct of sawn timber in commercial harvesting was 707 thousand ton/year, and that from the byproduct of forest tending was 592 thousand ton/year. The amount resulted in about 1,300 thousand ton/year of potential supplies from forest biomass resource into the energy market. It's tonnage of oil equivalent(toe) was 585 thousand ton/year. In this study, we developed a program (BiomassMap V2.0) for forest biomass resource mapping. Used system to develop this program was Microsoft Office Excel, Microsoft Office Access ArcGIS and Microsoft Visual Basic 6.0. Additionally, This program made use of tool such as ESRI MapObjects2.1 in order to take advantage of spatial information. This program shows the map of total biomass stock, annual biomass growth at forest land in Korea, and biomass production from forest tending and commercial harvesting. The information can also be managed by the program. The biomass resource map can be identified by regional and forest type for the purpose of utilization. So, we expect the map and program to be very useful for forest managers in the near future.

International Conference on Electroceramics 2005 (2005년도 국제 전자세라믹 학술회의)

  • 한국세라믹학회
    • Proceedings of the Korean Ceranic Society Conference
    • /
    • 2005.06a
    • /
    • pp.1-112
    • /
    • 2005
  • This report is results of a research on recent R&D trends in electroceramics, mainly focusing on the papers submitted to the organizing committee of the International Conference on Electroceramics 2005 (ICE-2005) which was held at Seoul on 12-15 June 2005. About 380 electroceramics researchers attended at the ICE-2005 from 17 countries including Korea, presenting and discussing their recent results. Therefore, we can easily understand the recent research trends in the field of electroceramics by analyses of the subject and contents of the submitted papers. In addition to the analyses of the papers submitted to the ICE-2005, we also collected some informations about domestic and international research trends to help readers understand this report easily. We analysed the R&D trends on the basis of four main categories, that is, informatics electroceramics, energy and environment ceramics, processing and characterization of electroceramics, and emerging fields of electroceramics. Each main category has several sub-categories again. The informatics ceramics category includes integrated dielectrics and ferroelectrics, oxide and nitride semiconductors, photonic and optoelectronic devices, multilayer electronic ceramics and devices, microwave dielectrics and high frequency devices, and piezoelectric and MEMS applications. The energy and environment ceramics category has four sub-categories, that is, rechargable battery, hydrogen storage, fuel cells, and advanced energy conversion concepts. In the processing and characterization category, there exist domain, strain, and epitaxial dynamics and engineering sub-category, innovative processing and synthesis sub-category, nanostructured materials and nanotechnology sub- category, single crystal growth and characterization sub-category, theory and modeling sub-category. Nanocrystalline electroceramics, electroceramics for smart sensors, and bioceramics sub-categories are included to the emerging fields category. We hope that this report give an opportunity to understand the international research trend, not only to Korean ceramics researchers but also to science and technology policy researchers.

  • PDF