• 제목/요약/키워드: Energy generator

검색결과 1,837건 처리시간 0.028초

Single-Phase Virtual Synchronous Generator for Distributed Energy Resources Integration

  • Zeng, Zheng;Cheng, Chong;Tang, Shengqing;Yang, Huan;Zhao, Rongxiang
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권3호
    • /
    • pp.264-271
    • /
    • 2014
  • Virtual synchronous generator (VSG) in single-phase to interface distributed renewable energy resources is investigated in this paper. Mathematical models and numerical analysis are utilized to illustrate the features of the VSG. Enhanced control strategy is presented to ensure the performance of the VSG. Besides, a second order generalized integer (SOGI) is employed to calculate the instantaneous output power of the VSG in virtual ${\alpha}{\beta}$ frame. By the means of a phase-locked loop based scheme, the VSG can seamlessly transform between islanded and grid-tied modes, which can meet the requirements of micro-grid. At last, the validation and the proposed approach are verified by the simulated results using PSCAD/EMTDC.

비상용 발전기 자원화 확대를 위한 현장실태조사에 관한 연구 (A Study on Site Survey of Emergency Generator for Resources)

  • 조성구;한운기;정진수;송영상;임현성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1565-1566
    • /
    • 2015
  • As a result of increasing power demand and concern about power supply shortage in the world, various energy sources without depletion of fossil fuel are installed to electrical network. Above all, nuclear energy can be considered as the most economical energy source to generate electricity. But recently, due to problem of safety which has emerged as a key social issue, additional construction of nuclear power plants is difficult. In order to replace nuclear power, researches on the emergency generator have been actively conducting. This study conducted a survey of public institutions about specification of backup generator system and current states to secure available capacity.

  • PDF

A Study on the Modeling and Design of Single Phase Induction Generators

  • Kim Cherl-Jin;Lee Kwan-Yong
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권4호
    • /
    • pp.331-336
    • /
    • 2005
  • With increasing emphasis on non-conventional energy systems and autonomous power generation, development of improved and appropriate generating systems has recently taken on greater significance. This paper describes the performance analysis of a single phase self-excited induction generator (SEIG), suitable for autonomous/standby power systems. The system is also appropriate for wind energy systems and small portable systems. Both windings of the induction machine, the main and the auxiliary, are utilized. One winding will be devoted to the supply excitation current only, by being connected to the excitation capacitor, while the load is connected across the other winding. As the design of excitation, the minimum of self-excited capacitor connected auxiliary winding is determined as the suitable value using a circuit equation of auxiliary winding. For the steady state analysis, the equivalent circuit of the single-phase induction generators is used as a basis for modeling using the double-revolving field theory. The validity of the designed generator system is confirmed by experimental and computed results.

원판형 압전 세라믹을 이용한 압전 발전 장치의 설계 및 제작 (Design and Fabrication of Piezoelectric Generator Using Piezoelectric Ceramics)

  • 전호익;정성수;박태곤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.315-316
    • /
    • 2008
  • On this paper, piezoelectric generators using piezoelectric ceramics were designed and fabricated. Generators were made by attaching cymbal type metal plates on upper and bottom sides of a disc type piezoelectric ceramic. Generator converts wasting mechanical energy to electrical energy. Output voltage was increased when thickness of ceramic and displacement of vibration were increased. Temperature of the ceramic was increased when it generates, but the temperature rising was saturated at certain temperature.

  • PDF

Comparative study of control strategies for the induction generators in wind energy conversion system

  • Giribabu, D.;Das, Maloy;Kumar, Amit
    • Wind and Structures
    • /
    • 제22권6호
    • /
    • pp.635-662
    • /
    • 2016
  • This paper deals with the comparison of different control strategies for the Induction generators in wind energy conversion system. Mainly, two types of induction machines, Self excited induction generator (SEIG) and doubly Fed Induction generators (DFIG) are studied. The different control strategies for SEIG and DFIG are compared. For SEIG, Electronic load Controller mechanism, Static Compensator based voltage regulator are studied. For DFIG the main control strategy namely vector control, direct torque control and direct power control are implemented. Apart from these control strategies for both SEIG and DFIG to improve the performance, the ANFIS based controller is introduced in both STATCOM and DTC methods. These control methods are simulated using MATLAB/SIMULINK and performances are analyzed and compared.

Effective Algorithm in Steady-State Analysis for Variable-Speed and Constant-Speed Wind Turbine Coupled Three-Phase Self-Excited Induction Generator

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제3B권3호
    • /
    • pp.139-146
    • /
    • 2003
  • In this paper, the steady-state operating performance analysis for the three-phase squirrel cage rotor self-excited induction generator (SEIG) driven by a variable-speed prime mover (VSPM) in addition to a constant-speed prime mover (CSPM) is presented on the basis of an effective algorithm based on its frequency-domain equivalent circuit. The operating characteristics of the three-phase SEIG coupled by a VSPM and/or a CSPM are evaluated on line processing under the condition of the electrical passive load parameters variations with simple and efficient computation processing procedure in unregulated voltage control loop scheme. A three-phase SEIG prototype setup with a VSPM as well as a CSPM is implemented for the small-scale clean renewable and alternative energy utilizations. The experimental operating characteristic results are illustrated and give good agreements with the simulation ones.

FR-4 평판 스프링 기반 저주파수용 진동형 전자기식 에너지 하베스터의 제작과 그 특성 (Fabrication of a Low Frequency Vibration Driven Electromagnetic Energy Harvester Using FR-4 Planar Spring and Its Characteristics)

  • 이병철;정귀상
    • 센서학회지
    • /
    • 제20권4호
    • /
    • pp.238-242
    • /
    • 2011
  • This paper describes the fabrication and characteristics of a low frequency vibration driven electromagnetic energy harvester. The fabricated generator consists of a permanent magnet of NdFeB, a FR-4 planar spring and a Copper cylinder type coil. ANSYS modal analysis was used to determine the resonant frequency for the generator. The implemented generator is capable of producing up to 550 mV peak-to-peak under 7 Hz frequency, which has a maximum power of $95.5\;{\mu}W$ with load resistance of $580\;{\Omega}$. This device is shown to generate sufficient power at different resonating modes, and the experimental and simulated results are discussed and composed.

Stand-Alone Pico-Hydro Generation System using a High-Efficiency IPM Synchronous Generator

  • Kurihara, Kazumi;Kubota, Tomotsugu
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권2호
    • /
    • pp.121-125
    • /
    • 2014
  • This paper presents a successful stand-alone pico-hydro generation system using a high-efficiency interior permanent-magnet (IPM) synchronous generator. A 1-kW 4-pole V-type IPM generator with low voltage regulation is used for laboratory test in stand-alone hydro energy conversion system. It has been found from experimental results that the constant output voltage is supplied stably by the proposed system under wide speed range.

Estimation of Effective Coil Length of Superconducting Generator using 3D FEM

  • Shin, Pan-Seok;Park, Doh-Young
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제12B권1호
    • /
    • pp.7-12
    • /
    • 2002
  • This paper presents a method to estimate an effective length of a 1000-kVA superconducting generator using three-dimensional FE analysis. Flux linkage of stator coil and the induced voltage are calculated with FEM program and Faraday's law. An effective length of the stator coil is estimated using the calculated voltage and geometric configurationn of the machine. In order to verify the estimation method, 30-kVA superconducting generator is built and tested. The test result agrees reasonably well with the estimation.

750kW Gearless PM 동기발전기 로터프레임 경량화 (Structural optimization for rotor frame of 750kW gearless type PMSG)

  • 홍혁수;박진일;류지윤
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.286-289
    • /
    • 2008
  • Mass of generator is one of the most important characteristic value especially direct drive type wind turbine. This paper introduce how to decease mass of generator rotor frame without declining generator performance. To obtain optimal design of rotor frame, sensitivity analysis using Taguchi method and RSM(response surface method) are have been performed.

  • PDF