• Title/Summary/Keyword: Energy generator

Search Result 1,837, Processing Time 0.024 seconds

A Study on Utility Inter-Active for Urban Photovoltaic/Wind Hybrid Generation System (도시보급용 소형 태양광/풍력 복합발전의 계통연계운전에 관한 연구)

  • Ji Woon-Seok;Yoon Pil-Hyun;Cho Kyeng-Jai;Lee Jeong-il;Lim Jung-Yeol;Cha In-Su
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1504-1506
    • /
    • 2004
  • Photovoltaic and wind power generation have an advantage of unpolluted and unlimited amount of energy resource. Since there is such an advantage in these energies, But photovoltaic system and wind system cannot always generate stable output with ever-changing weather condition. In this paper, the auxiliary power generator for hybrid system(photovoltaic 500[W], wind power generation 400[W]) was suggested. the auxiliary power generator that uses elastic energy of spiral spring to photovoltaic system was also added for present system. when output of photovoltaic system gets lower than 24[V], power was continuously supplied to load through the inverter by charging energy of spiral spring operates in DC generator.

  • PDF

Design of a 500W Class Micro Turbine Generator System as a Next Generation Military Power Source (차세대 군용전원용 500W급 마이크로 터빈 발전기 시스템 설계)

  • Choi, Sang-Kyu;Choi, Bum-Suk;Han, Yong-Shik;Woo, Byung-Chul;Song, In-Hyuck;Min, Seong-Ki;Lim, Jin-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1192-1197
    • /
    • 2011
  • Recent developments of small-size unmanned or manned mobile systems such as autonomous robots, exoskeleton or armored suits, micro air vehicles, and unmanned armored vehicles require long-lasting independent power sources of high energy and power density to support the systems' operation for up to 72 hours in the fields. Chemical batteries such as Ni-MH, Li-Ion, the current primary power sources for mobile devices, however, are not capable of providing enough power and energy density for the next generation high power mobile machines. For this reason, KIMM along with KERI and KIMS has been carrying out a 500W MTG development project under the DAPA's "Next generation military power source R&D program" since 2009. In this paper, a design process for a 500W MTG system currently being developed at KIMM is briefly described and the technical issues related to its development are addressed.

A Novel Variable-Speed Renewable-Energy Generation System of Induction Generator and PWM Converter for Small-Scale Hybrid Power Applications

  • Ahmed, Tarek;Nishida, Katsumi;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1339-1342
    • /
    • 2005
  • This paper presents a simple AC-DC power conditioner for a squirell-cage induction generator(IG) operating under variable shaft speeds. The necessary reactive power for the IG system is supplied by means of a capacitor bank and a voltage-source PWM converter. Using a capacitor bank to transfer the reactive power to the IG under the rated speed and no-load conditions starts the IG operation and reduces the PWM power converter size. A simple control compensating for changes in the electrical loads as well as the variation in speed was developed to regulate the voltages of the IG system by controlling the rotor flux through its reactive and active currents control implementation. This proposed power conditioning scheme can be used efficiently as a wind power generation system where the output voltage of the IG is maintained constant voltage despite the variable frequency and the DC bus voltage of the PWM converter can be used for either DC applications such as battery charging or AC power applications with 60/50 Hz by connecting a stand alone inverter. The experimental and simulated operating performance results of a 5 kW IG scheme at various speeds and leads are presented.

  • PDF

Ordering of Alloy 690 Steam Generator Tubings in a Nuclear Power Plant (원자력발전소 증기발생기 Alloy 690 전열관 재료의 규칙화 반응)

  • Seong Sik Hwang;Min Jae Choi;Sung Woo Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.214-219
    • /
    • 2023
  • Considering the case in the United States where most nuclear power plants with an initial design life of 40 years continue to operate until 60 or 80 years after undergoing material soundness evaluation, it is time to plan a more robust long-term operation strategy for nuclear power plants in Korea. There are some reports that SRO/LRO might be formed when Alloy 690 is heat treated for 10,000 hours to 100,000 hours at 360 to 450 ℃. The possibility of LRO formation in Alloy 690 steam generator tubings of Kori nuclear power plant unit 1 (Kori-1) was investigated using existing research papers. The mechanism in which SRO/LRO occurred was also surveyed. Alloy 690 was found to be more likely to cause ordering than Alloy 600 in terms of alloy composition. The ordering could be evaluated through changes in material properties. However, it is difficult to evaluate it from a microstructural point of view. The likelihood of LRO in Alloy 690 of the Kori-1 plant operated at 320 ℃ for 19 years seemed to be low in terms of time and exposure temperature.

Characteristics of Bio-Piezoelectric Generator Using Edible Collagen Powder (식용 콜라겐 분말을 적용한 바이오 압전 발전기의 특성)

  • Ha-Young Son;Sang-Shik Park
    • Korean Journal of Materials Research
    • /
    • v.34 no.4
    • /
    • pp.215-222
    • /
    • 2024
  • Because collagen is inherently piezoelectric, research is being actively conducted to utilize it to harvest energy. In this study, a collagen solution was prepared using edible low-molecular-weight peptide collagen powder, and collagen films were fabricated using a dip coating method. The collagen films prepared by dip coating showed a smooth surface without defects such as pinholes or cracks. Dehydrothermal treatment of the collagen films was performed to induce a stable molecular structure through cross-linking. The collagen film subjected to dehydrothermal treatment at 110 ℃ for 24 h showed a thickness reduction rate of 19 %. Analysis of the collagen films showed that the crystallinity of the collagen film improved by about 7.9 % after dehydrothermal treatment. A collagen film-based piezoelectric nanogenerator showed output characteristics of approximately 13.7 V and 1.4 ㎂ in a pressure test of 120 N. The generator showed a maximum power density of about 2.91 mW/m2 and an output voltage of about 8~19 V during various human body movements such as finger tapping. The collagen film-based piezoelectric generator showed improved output performance with improved crystallinity and piezoelectricity after dehydrothermal treatment.

Investigation on Performance Analysis of Sodium-Water Reaction Pressure Relief System of Prototype Generation-IV Sodium-Cooled Fast Reactor (소듐냉각고속로 원형로 소듐-물 반응 압력완화계통 성능 해석 연구)

  • Park, Sun Hee;Han, Ji-Woong
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.28-41
    • /
    • 2019
  • We carried out performance analysis of Sodium-Water Reaction Pressure Relief System of Prototype Generation-IV Sodium-Cooled Fast Reactor. We analyzed transient-dynamic behavior of fluids inside the steam generator to vent into a sodium dump tank or a water dump tank when tubes in the steam generator were broken to cause a large-water-leak accident. Accordingly, we preliminarily evaluated design requirements of our system. Our results showed that sodium in the shell side of the steam generator and in Intermediate Heat Transport System was completely vented within 50 s and feed water in the tube side of the steam generator was completely vented within 2.5 s. It was analyzed that pressure of the tube side of the steam generator was higher than pressure of the shell side of the steam generator, which showed that sodium in the shell side did not flow into the tube side. Our results are expected to be used as basis information to performance analysis of Sodium-Water Reaction Pressure Relief System of Prototype Generation-IV Sodium-Cooled Fast Reactor.

Effects of Mixing Ratio and Poling on Output Characteristics of BaTiO3-Poly Vinylidene Fluoride Composite Piezoelectric Generators (BaTiO3-Poly Vinylidene Fluoride 복합 압전발전기의 출력특성에 미치는 배합비와 분극의 효과)

  • Hee-Tae Kim;Sang-Shik Park
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.517-524
    • /
    • 2023
  • BaTiO3-Poly vinylidene fluoride (PVDF) solution was prepared by adding 0~25 wt% BaTiO3 nanopowder and 10 wt% PVDF powder in solvent. BaTiO3-PVDF film was fabricated by spreading the solution on a glass with a doctor blade. The output performance increased with increasing BaTiO3 concentration. When the BaTiO3 concentration was 20 wt%, the output voltage and current were 4.98 V and 1.03 ㎂ at an applied force of 100 N. However, they decreased when the over 20 wt% BaTiO3 powder was added, due to the aggregation of particles. To enhance the output performance, the generator was poled with an electric field of 150~250 kV/cm at 100 ℃ for 12 h. The output performance increased with increasing electric field. The output voltage and current were 7.87 V and 2.5 ㎂ when poled with a 200 kV/cm electric field. This result seems likely to be caused by the c-axis alignment of the BaTiO3 after poling treatment. XRD patterns of the poled BaTiO3-PVDF films showed that the intensity of the (002) peak increased under high electric field. However, when the generator was poled with 250 kV/cm, the output performance of the generator degraded due to breakdown of the BaTiO3-PVDF film. When the generator was matched with 800 Ω resistance, the power density of the generator reached 1.74 mW/m2. The generator was able to charge a 10 ㎌ capacitor up to 1.11 V and turn on 10 red LEDs.

Wear Progress Model by Impact Fretting in Steam Generator Tube (충격 프레팅에 의한 증기발생기 세관 마모손상 진행모델)

  • Lee, Jeong-Kun;Park, Chi-Yong;Kim, Tae-Ryong;Cho, Sun-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1684-1689
    • /
    • 2007
  • Fretting wear is one of the important degradation mechanisms of steam generator tubes in the nuclear power plants. Especially, impact fretting wear occurred between steam generator tubes and tube support plates or anti-vibration bar. Various tests have been carried out to investigate the wear mechanisms and to report the wear coefficients. Those are fruitful to get insight for the wear damage of steam generator tubes; however, most wear researches have concentrated on sliding wear of the steam generator tubes, which may not represent the wear loading modes in real plants. In the present work, impact fretting tests of steam generator tube were carried out. A wear progression model for impact-fretting wear has been investigated and proposed. The proposed wear progression model of impact-fretting wear is as follows; oxide film breaking step at the initial stage, and layer formation step, energy accumulation step and finally particle torn out step which is followed by layer formation in the stable impact-fretting progress. The wear coefficient according to the work-rate model has been also compared with one between tube and support.

  • PDF

Characteristic of Electric Generation for the Water Flow Rate in Thermoelctric Generator Using Hot Water (온수를 이용한 열전발전기에서 유량변화에 따른 발전 특성)

  • Woo, Byung-Chul;Lee, Hee-Woong;Suh, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1333-1340
    • /
    • 2002
  • The objective of this study is to develop a thermoelectric generation system which converts unused energy from close-at-hand sources such as garbage incineration heat and industrial exhaust etc. into electricity. This paper presents applicability of a commercially available thermoelectric generator f3r waster heat recovery. The test facility consists of water heater, pump, thermoelectric module and aluminium tubes and hot and cold water is used as heat source and sink fluids. It is shown that the three components of thermoelectric research exist in manufacturing a thermoelectric generator. The first component is fabrication of thermoelectric materials, the second is manufacturing of thermoelectric generator with 32 thermoelectric modules. The last one is characteristic measuring of thermoelectric generator with 32 thermoelectric modules of two types, cooling and power purpose. It was found that the rate of cold and hot water is 25 and 37 liter per minute and the maximum power of thermoelectric generator is 28Watts and its efficiency is 1.04%.

A Study on Methodology of Optimal Operation of BESS and Diesel Generators in a Microgrid Considering Efficiency Characteristics According to the Power Ratios of Diesel Generators (디젤발전기의 출력비에 따른 효율을 고려한 마이크로그리드에서의 BESS와 디젤발전기의 최적 운영 기법에 관한 연구)

  • Lee, Byung Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.539-546
    • /
    • 2016
  • With the growing interest of microgrid systems all over the world, many studies on microgrid operation are being carried out. The battery energy storage system(BESS) and the diesel generator are key equipments in the microgrid. In this paper, we analyze the characteristics of fuel consumption according to the power ratio of the diesel generator. Then, the formula to represent the unit cost of generation according to the power ratio of the diesel generator is derived. A new modeling of battery operation is presented considering the lifetime reduction according to increasing the cycles of charge/discharge operation of the battery. The methodology of determining the optimal operation of the battery and the diesel generator is presented by the use of the formula of fuel consumption of the diesel generator and the new modeling of battery operation. It is shown that this optimization methodology can be applied effectively for economical operation of the BESS and the diesel generator of a microgrid by case studies.