• Title/Summary/Keyword: Energy generation

Search Result 4,974, Processing Time 0.03 seconds

Life cycle analysis on correlation relationship between GHG emission and cost of electricity generation system for energy resources (전과정을 고려한 에너지 자원별 전력생산의 온실가스 배출량과 비용의 상관관계 분석)

  • Kim, Heetae;Ahn, Tae Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.136.2-136.2
    • /
    • 2011
  • In this work, we analyzed correlations between life-cycle greenhouse gas (GHG) emissions and life-cycle cost of energy resources. Energy resources studied in this paper include coal, natural gas, nuclear power, hydropower, geothermal energy, wind power, solar thermal energy, and solar photovoltaic energy, and all of them are used to generate electricity. We calculated the mean values, ranges of maximum minus minimum values, and ranges of 90% confidence interval of life-cycle GHG emissions and life-cycle cost of each energy resource. Based on the values, we plotted them in two dimensional graphs to analyze a relationship and characteristics between GHG emissions and cost. Besides, to analyze the technical maturity, the GHG emissions and the range of minimum and maximum values were compared to each other. For the electric generation, energy resources are largely inverse proportional to the GHG emission and the corresponding cost.

  • PDF

The Investigation of Problems for Next Generation Energy System during Existing Urban Plan Stage (기존 도시계획 단계에서 차세대에너지시스템 적용시 문제점 검토)

  • Park, Jin-Young;Kim, Sam-Uel;Park, Yool;Lee, Sang-Jin;Lee, Jurng-Jae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.190-195
    • /
    • 2009
  • Since the industrial revolution, the global environmental problems such as greenhouse gas accumulation and the average temperature increase have caused people's attention. 'Low Carbon, Green Growth' was presented to cope with these global concerns, as one of main policies of 2008 in Korea. The paradigm of a green urban development is started to concern the whole city's energy problems owing to realize 'Low Carbon, Green Growth' in the urban side. The government established a nation's basic energy plan for 20 years, and some local cities made efforts to develop new renewable energy such as the solar, wind and water energy which are suitable to each city's character. As a part of these efforts, the concept of U-Eco city is newly appeared to reflect upon ubiquitous technique, urban ecology and the next generation energy system. However, urban plan is difficult to adopt this next generation energy system with existing laws, regulations and technical systems. The new executive and systematic system is needed to realize the U-Eco city U-Eco for the management of an efficient city. In this study, the authors investigate the concept of the next generation energy system and U-Eco city to realize the energy-efficient city plan and analyze problems to occur during the application of them in an existing city plan. Then, the authors show the remedies to deal with occurred problems.

  • PDF

Non-linear Regression Model Between Solar Irradiation and PV Power Generation by Using Gompertz Curve (Gompertz 곡선을 이용한 비선형 일사량-태양광 발전량 회귀 모델)

  • Kim, Boyoung;Alba, Vilanova Cortezon;Kim, Chang Ki;Kang, Yong-Heack;Yun, Chang-Yeol;Kim, Hyung-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.113-125
    • /
    • 2019
  • With the opening of the small power brokerage business market in December 2018, the small power trading market has started in Korea. Operators must submit the day-ahead estimates of power output and receive incentives based on its accuracy. Therefore, the accuracy of power generation forecasts is directly affects profits of the operators. The forecasting process for power generation can be divided into two procedure. The first is to forecast solar irradiation and the second is to transform forecasted solar irradiation into power generation. There are two methods for transformation. One is to simulate with physical model, and another is to use regression model. In this study, we found the best-fit regression model by analyzing hourly data of PV output and solar irradiation data during three years for 242 PV plants in Korea. The best model was not a linear model, but a sigmoidal model and specifically a Gompertz model. The combined linear regression and Gompertz curve was proposed because a the curve has non-zero y-intercept. As the result, R2 and RMSE between observed data and the curve was significantly reduced.

Operation of Photovoltaic Generation System with Battery and Electrolyzer (Battery와 Electrolyzer를 이용한 태양광 발전시스템 운영)

  • Gang, Gi-Hyeok;Kim, Yun-Seong;Loc, Nguyen Khanh;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1994-2000
    • /
    • 2008
  • The output power of photovoltaic(PV) generation system is strongly affected by weather conditions. To make up for the defect of solar energy, energy storages such as battery and electrolyzer are usually integrated with photovoltaic cell. This paper focuses on the way to store energy surplus with battery and electrolyzer and to provide energy with battery. Photovoltaic generation system is modeled with PV cell, DC/DC converter, DC/AC inverter, battery and electrolyzer. The operation algorithm to regulate PV output power with battery and electrolyzer is suggested. The simulation results show that battery and electrolyzer effectively cooperate with each other to compensate the fluctuation of PV generation system.

Study on the Optimal Capacity Design for Tri-generation System using PVT and GSHP (태양광열-지열 이용 Tri-generation 시스템의 적정 용량 설계를 위한 해석 연구)

  • Bae, Sangmu;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.4
    • /
    • pp.16-23
    • /
    • 2019
  • Renewable energy systems are essential for the realization of zero energy building (ZEB). Moreover, the integrated system using solar and geothermal energy has been developed for heating, cooling and power of the building. However, there are few studies considering various design factors for system design. In this study, in order to develop the optimal design method for the system, the performance of the system was quantitatively compared and analyzed through dynamic simulation. Moreover, economic analysis was conducted based on the results of system performance. Through the performance and economic analysis results, the optimal design method of the tri-generation system was proposed.

Proposed Neural Network Approach for Monitoring Plant Status in Korean Next Generation Reactors

  • Varde, P.V.;Hur, Seop;Lee, D.Y.;Moon, B.S.;Han, J.B.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.112-120
    • /
    • 2003
  • This paper reports the development work carried out in respect of a proposed application of Neural Network approach for the Korean Next generation Reactor (KNGR) now referred as APR-1400. The emphasis is on establishing the methodology and the approach to be adopted towards realizing this application in the next generation reactors. Keeping in view the advantages and limitation of Artificial Neural Network Approach, the role of ANN has been limited to plant status or to be more precise plant transient monitoring. The simulation work carried out so far and the results obtained shows that artificial neural network approach caters to the requirements of plant status monitoring and qualifies to be incorporated as a part of proposed operator support systems of the referenced nuclear power plant.

Development of Prediction Model for Renewable Energy Environmental Variables Based on Kriging Techniques (크리깅 기법 기반 재생에너지 환경변수 예측 모형 개발)

  • Choy, Youngdo;Baek, Jahyun;Jeon, Dong-Hoon;Park, Sang-Ho;Choi, Soonho;Kim, Yeojin;Hur, Jin
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.223-228
    • /
    • 2019
  • In order to integrate large amounts of variable generation resources such as wind and solar reliably into power grids, accurate renewable energy forecasting is necessary. Since renewable energy generation output is heavily influenced by environmental variables, accurate forecasting of power generation requires meteorological data at the point where the plant is located. Therefore, a spatial approach is required to predict the meteorological variables at the interesting points. In this paper, we propose the meteorological variable prediction model for enhancing renewable generation output forecasting model. The proposed model is implemented by three geostatistical techniques: Ordinary kriging, Universal kriging and Co-kriging.

Current Status of Solar Power Generation in Jinju City Close to the South Coast and Jeonju City Close to the West Coast

  • Kwang Pyo Hong;Yun-Hi Kim;Gi-Hwan Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.62-69
    • /
    • 2023
  • Recently, renewable energy has been increasing in Korea to reduce greenhouse gas, and solar power generation, which accounts for the largest proportion of renewable energy, is noteworthy. The government policy will further increase solar power generation. In order to implement the policy, it is important to understand the current status of domestic solar power generation facilities. Therefore, the current status of solar power generation facilities in Jinju city close to the south coast and Jeonju city close to the west coast was investigated and compared. By 2020, 618 solar power plants had been installed in Jeonju city and 269 in Jinju city. However, there is not much difference in the amount of solar power generation for business at 9 GWh. The reason is that Jinju city has a lower population density than Jeonju city, so there are enough places to install a large-scale solar power facilities with a large power generation capacity. Monthly solar power generation was the highest in April in both Jeonju city and Jinju city and the lowest in January. In particular, in December, Jinju city showed more solar power generation than Jeonju city because of the large amount of insolation, long sunshine hours, and few clouds.

Improvement of Resident's Participation on Renewable Energy Power Generation Project in Rural Area - Focused on the Rural Solar Power Generation Systems - (농촌지역 신재생에너지 발전사업 주민참여 활성화 연구 - 농촌태양광 시스템을 중심으로 -)

  • Lee, Chul-sung;Kim, Hyuk;Shin, Seung-wook;Park, Mi-lan
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.4
    • /
    • pp.107-115
    • /
    • 2022
  • This study investigated the status of resident participation in the policy of supplying new and renewable energy in rural areas. According to the survey, most of the rural residents were well aware of the new and renewable energy supply project promoted by the government. However, it was found that participation in the project was difficult mainly for economic and social reasons. In order to activate the participation of rural residents who can't participate in the renewable energy power generation project for economic and social reasons, it is necessary to develop and promote business models and support policies for power generation projects in which village communities participate. Changes in residents' acceptability due to resident education and operation for solar power systems were analyzed. As a result of the survey, it was found that the satisfaction of rural residents was high when new and renewable energy power generation projects were introduced in rural areas. Therefore, it is thought that the government's goal of increasing farm household income and expanding the supply of new and renewable energy in rural area can be successfully achieved by the improvement of resident acceptability and the increase of the participation rate. Lastly, this study presented a plan to improve the resident acceptability of the renewable energy system by using the rural solar project and survey results.

The Development and Application of a Training Base for the Installation and Adjustment of Photovoltaic Power Generation Systems

  • Chuanqing, SUN
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.37-50
    • /
    • 2016
  • In recent years, the development and application of green energy resources have attracted more and more /$^*$ 'tention of people. The training room presented here is focused on the terminal applications of a photovoltaic power generation system (PPGS). Through introducing the composition and the general design principles, we aimed at leading the students to master the fundamental skills required for its design, installation and construction. The training room consists of numerous platforms, such as: PPGS, Wind and Photovoltaic Hybrid Power Generation Systems, Wind Power Generation Equipments, Simulative Grid-Connected Power Generation System, Electronic Technology Application of New Energy, etc. This enables the students to obtain their project and professional skills training via assembling, adjusting, maintaining and inspecting, etc., various component parts of the photovoltaic and new energy power generation systems, to further grasp the fundamental and related theoretical knowledge, and to further reinforce their practical and operational skills, so as to improve their problem-analyzing and problem-solving abilities.