• 제목/요약/키워드: Energy frame

검색결과 1,047건 처리시간 0.025초

Determining elastic lateral stiffness of steel moment frame equipped with elliptic brace

  • Habib Ghasemi, Jouneghani;Nader, Fanaie;Mohammad Talebi, Kalaleh;Mina, Mortazavi
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.293-318
    • /
    • 2023
  • This study aims to examine the elastic stiffness properties of Elliptic-Braced Moment Resisting Frame (EBMRF) subjected to lateral loads. Installing the elliptic brace in the middle span of the frames in the facade of a building, as a new lateral bracing system not only it can improve the structural behavior, but it provides sufficient space to consider opening it needed. In this regard, for the first time, an accurate theoretical formulation has been developed in order that the elastic stiffness is investigated in a two-dimensional single-story single-span EBMRF. The concept of strain energy and Castigliano's theorem were employed to perform the analysis. All influential factors were considered, including axial and shearing loads in addition to the bending moment in the elliptic brace. At the end of the analysis, the elastic lateral stiffness could be calculated using an improved relation through strain energy method based on geometric properties of the employed sections as well as specifications of the utilized materials. For the ease of finite element (FE) modeling and its use in linear design, an equivalent element was developed for the elliptic brace. The proposed relation was verified by different examples using OpenSees software. It was found that there is a negligible difference between elastic stiffness values derived by the developed equations and those of numerical analysis using FE method.

다층 비좌굴 가새골조와 등가 단자유도계의 에너지 요구량의 비교 (Comparison of Energy Demand in Multi-Story Buckling Restrained Braced Frame and Equivalent SDOF System)

  • 김진구;원영섭
    • 한국전산구조공학회논문집
    • /
    • 제16권2호
    • /
    • pp.173-182
    • /
    • 2003
  • 비선형 정적해석 및 에너지를 이용한 설계방법에서는 구조물을 등가의 단자유도계로 치환하여 해석하는 것이 일반적이다. 본 연구에서는 지진하중에 의한 3층, 8층, 20층 철골 모멘트저항골조(MRF), 비좌굴 가새골조(BRBF)와 힌지접합 비좌굴 가새골조 (DTBF) 구조물의 에너지 요구량을 등가 단자유도계 시스템(ESDOF)의 에너지 요구량과 비교하여 등가단자유도계로 치환하는 방법의 타당성을 검토하였다 입력에너지와 이력에너지를 산정하기 위하여 연암 지반, 연약한 토사, 단층 근처의 지반에서 계측된 60개의 지진을 사용하였으며, 모드 질량계수가 0.8보다 작은 경우 ESDOF로 변환할 때 고차모드의 효과를 고려하였다. 연구결과에 따르면 3층과 8층 MRF와 DTBF에서의 이력에너지와 입력에너지는 ESDOF의 해석결과와 비교적 잘 일치하였다. 그러나 20층 BRBF에서는 ESDOF의 결과가 본 구조물의 결과를 과소평가하는 것으로 나타났다.

Airtightness of Light-Frame Wood Houses built in Daejeon and Chungnam Area

  • Jang, Sang-sik;Ha, Been
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권2호
    • /
    • pp.147-158
    • /
    • 2017
  • Among the energy consumption in building, the heating energy takes the largest part. Therefore, it is important to minimize the heat energy loss in building for the reduction of overall energy use in construction. The most important points for the minimization of energy loss in building are insulation and airtightness. Especially, in wood houses, airtightness is very important for energy saving as well as increase of durability. However, the researches on airtightness of wood buildings have been started recently and are very deficient especially in Korea. In this study, air leakage properties and airtightness performance were evaluated for light-frame wood houses built in Daejeon and Chungnam area. Total 7 houses were evaluated, among which four houses (Case 1 to Case 4) were in the construction stage before interior finish and the other three houses (Case 5 to Case 7) were after completion of construction work. The tests for airtightness were conducted by pressurization-depressurization method, and the factors included in the measurements includes air leakage rate at 50 Pa (CMH50), air change rate at 50 Pa (ACH50), equivalent leakage area (EqLA) and EqLA per floor area. As a result of this study, key air leakage points in wood houses were found to be the gaps between floor and wall, the holes for wiring and plumbing, the double glasses windows and the entrance doors. The average value of ACH50 for the houses after completion of construction work was $3.5h^{-1}$ that was similar to Europe standard ($3.0h^{-1}$). ACH50 was proportional to EqLA per floor area but inversely proportional to the internal volume, the net floor area and the area of window.

TMS320C30을 이용한 실시간 음성부 검출 알고리즘 구현 (Implementation of A REal-time Endpoint Detection Algorithm Using TMS320C30)

  • 이항섭
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1993년도 학술논문발표회 논문집 제12권 1호
    • /
    • pp.229-232
    • /
    • 1993
  • 이 논문은 최근에 개발된 실시간 음성부 검출 알고리즘[1]을 TMS320C30 System board와 IBM PC486을 이용한 implementation에 관한 논문이다. 음성부 검출 알고리즘은 Energy와 LCR(Level Crossing Rate)를 이용하여 각 frame을 음성/묵음으로 분류하는 방법을 사용하였고 DSP 보드를 사용하여 한 frame이 입력되면 다음 frame이 입력되기 전에 그 frame에 대한 음성/묵음 분류를 하여 음성입력이 끝남과 동시에 음성이라고 판단되는 부분만을 DPS moemory상에 저장하므로 불필요한 memory의 낭비를 중이고 다음 단계의 음성처리를 위한 시간을 절약하였다. 이 알고리즘의 성능 평가를 위하여 Rabiner와 Sambur의 알고리즘과 한민수의 알고리즘과를 전문가가 수작업으로 찾아낸 결과와 비교 평가하였다. 알고리즘의 오차는 평균 남성 4.925ms, 여성 5.85ms로 1 frame 이내의 오차를 보였다.

  • PDF

연료전지차량 차체프레임 강성 및 내구해석 (Stiffness and Fatigue Strength Analysis of Fuel Cell Vehicle Body Frame)

  • 최복록;강성종
    • 한국자동차공학회논문집
    • /
    • 제19권4호
    • /
    • pp.47-53
    • /
    • 2011
  • Firstly, FEM model for the body frame of a fuel cell vehicle was built up and design optimization results based on different schemes were exhibited. One scheme was to minimize weight while maintaining the normal mode frequencies and the other was to increase the frequencies without weight change. Next, for a rear frame model, shape parameter study on collapse characteristics such as peak resistance load and absorbed energy was carried out. Also, the stiffness of frame mounting brackets was predicted using inertance calculation and the durability of those mounting brackets for vehicle system loads was evaluated. Finally, for a representative mounting model, the influence on durability due to thickness change was analyzed.

피로 강도 및 경량화를 고려한 대차프레임 설계 (Bogie Frame Design Considering Fatigue Strength and Minimize Weight)

  • 박병화;김남포;김정석;이강용
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.579-584
    • /
    • 2004
  • In development of the bogie, the fatigue strength of the bogie frame is an important design criteria. Also the bogie frame weight reduction is required in order to save energy and materials. In this study. structural analysis of bogie frame by using the finite element method has been performed for the various loading conditions according to the UIC standards and it has been attempted minimize the weight of bogie frame by back-propagation neural network and genetic algorithm. Finite element mesh generation and finite element analysis were performed by Altaire Hyper Mesh and ABAQUS.

  • PDF

자유진동 변위데이터를 이용한 철골구조물의 모드인자 파악 (Modal Parameter Estimation of a Steel Frame Structure by Using Free Vibration Displacement Data)

  • 함희정
    • 산업기술연구
    • /
    • 제29권A호
    • /
    • pp.19-25
    • /
    • 2009
  • The proper orthogonal decomposition (POD) analysis of vibration of a steel frame structure is performed to extract modal parameters. The theoretical background of the POD method is introduced briefly, and this technique is further applied to free vibration displacements of one bay-two story steel frame structure to extract the modal parameters. From the POD analysis of the steel frame structure, it is found that important modal parameters such as true mode shapes, modal kinematic energy, natural frequencies, and damping ratios can be obtained for the building efficiently and in detail. Therefore, it is concluded that the POD method could be one of the useful techniques in analysis of vibration of structures.

  • PDF

Zigbee MAC 프로토콜기반 인체 응용을 위한 나노 네트워크의 슈퍼 프레임 설계 (Zigbee MAC Protocol based Super frame Design for In-body Nano-Network Applications)

  • 이경환;김성운
    • 한국멀티미디어학회논문지
    • /
    • 제19권9호
    • /
    • pp.1690-1697
    • /
    • 2016
  • In a beacon-enabled Zigbee network, the slotted CSMA/CA mechanism based on the super frame structure fairly provides communication chance for each node and makes a reasonable usage of the available energy. In the case of wireless nano sensors that are implanted into the target human body area for detecting disease symptoms or virus, such a nano-network requires a similar type of channel sharing and transmission of short length event-driven data. In this paper, for nano-network's in-body applications, we aim to design conceptually a new super frame derived from the existing beacon-enabled Zigbee MAC protocol. And we analyze the efficiency of the proposed super frame in the aspect of practical deployment.

강도저항형 코어와 프레임 구조의 진동주기차를 이용한 듀얼프레임 제진시스템의 응답특성 (Response Characteristic of the Dual-frame Passive Control System with the Natural Period Difference between the Strength Resistant Core and Frame Structure)

  • 김태경;최광용;오상훈;유홍식
    • 한국지진공학회논문집
    • /
    • 제19권6호
    • /
    • pp.273-282
    • /
    • 2015
  • In this study, shaking table test has been carried out for the dual frame passive control system for seismic performance verification of the proposed system. The proposed system was separated into two independent frameworks that are strength resistant core and frame structure by connecting to the damper. Moreover, the seismic performance improvement of the proposed system has been verified by comparing and analyzing the experimental results of the proposed system with an existing core system. As a result of the shaking table test, acceleration and displacement responses of dual-frame vibration control system are decreased than those of the existing strength resistant type core system. In the case of the core system, while the damage was concentrated on the column of first floor, the damage of the dual system was dispersed in each layer. The damage also was concentrated on the damper, almost no damage occurs to the structural members. It has been emphasized that installed dampers in the proposed dual system reduce the input energy of whole structure by absorbing seismic input energy, which leads overall system damage to be reduced.

Unified calculation model for the longitudinal fundamental frequency of continuous rigid frame bridge

  • Zhou, Yongjun;Zhao, Yu;Liu, Jiang;Jing, Yuan
    • Structural Engineering and Mechanics
    • /
    • 제77권3호
    • /
    • pp.343-354
    • /
    • 2021
  • The frequencies formulas of the bridge are of great importance in the design process since these formulas provide insight dynamic characteristics of the structure, which guides the designers to parametric analyses and the layout of the bridge in conceptual or preliminary design. Continuous rigid frame bridge is popular in the mountainous area. Mostly, this type of bridge was simplified either as a girder or cantilever when calculating the frequency, however, studies showed that the different configuration of the bridge made the problem more complex, and there is no unified fundamental calculation pattern for this kind of bridge. In this study, an empirical frequency equation is proposed as a function of pier's height, stiffness of pier and the weight of the structure. A unified fundamental frequency formula is presented based on the energy principle, then the typical continuous rigid frame bridge is investigated by finite element method (FEM) to study the dynamic characteristics of the structure, and then several key parameters are investigated on the effect of structural frequency. These parameters include the number, position and stiffness of the tie beam. Nonlinear regression analyses are conducted with a comprehensive statistical study from plenty of engineering structures. Finally, the proposed frequency equation is validated by field test results. The results show that the fundamental frequency of the continuous rigid frame bridge increases more than 15% when the tie beams are set, and it increases with the stiffness ratio of tie beam to pier. The results also show that the presented unified fundamental frequency has an error of 4.6% compared with the measured results. The investigation can predicate the approximate longitudinal fundamental frequency of continuous ridged frame bridge, which can provide reference for the seismic response and dynamic impact factor design of the pier.