• Title/Summary/Keyword: Energy estimation

Search Result 2,218, Processing Time 0.025 seconds

A two-stage Kalman filter for the identification of structural parameters with unknown loads

  • He, Jia;Zhang, Xiaoxiong;Feng, Zhouquan;Chen, Zhengqing;Cao, Zhang
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.693-701
    • /
    • 2020
  • The conventional Kalman Filter (KF) provides a promising way for structural state estimation. However, the physical parameters of structural systems or models should be available for the estimation. Moreover, it is not applicable when the loadings applied to the structures are unknown. To circumvent the aforementioned limitations, a two-stage KF with unknown input approach is proposed for the simultaneous identification of structural parameters and unknown loadings. In stage 1, a modified observation equation is employed. The structural state vector is estimated by KF on the basis of structural parameters identified at the previous time-step. Then, the unknown input is identified by Least Squares Estimation (LSE). In stage 2, based on the concept of sensitivity matrix, the structural parameters are updated at the current time-step by using the estimated structural states obtained from stage 1. The effectiveness of the proposed approach is numerically validated via a five-story shearing model under random and earthquake excitations. Shaking table tests on a five-story structure are also employed to demonstrate the performance of the proposed approach. It is demonstrated from numerical and experimental results that the proposed approach can be used for the identification of parameters of structure and the external force applied to it with acceptable accuracy.

Estimation of Land Surface Energy Fluxes using CLM and VIC model (CLM과 VIC 모형을 활용한 지표 에너지 플럭스 산정)

  • Kim, Daeun;Ray, Ram L.;King, Seokkoo;Choi, Minha
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.166-172
    • /
    • 2016
  • Accurate understanding of land surface is essential to analyze energy exchanges between earth surface and atmosphere. For the quantization of energy fluxes, the various researches about Land Surface Model(LSM) have been progressed. Among the various LSMs, the researches using Common Land Model(CLM) and Variable Infiltration Capacity(VIC) model are performed briskly. The CLM which is advanced LSM can calculate realistic results with few user defined parameters. The VIC model which is also typical LSM is widely used for estimation of energy fluxes and runoff in various fields. In this study, the energy fluxes which are net radiation, sensible heat flux, and latent heat flux were estimated using CLM and VIC model at Southern Sierra-Critical Zone Observatory(SS-CZO) site in California, United States. In case of net radiation and sensible heat flux, both models showed good agreement with observations, however, the CLM showed underestimated patterns of net radiation and sensible heat flux during precipitation period. In case of latent heat flux, the CLM represented better estimation of latent heat flux than VIC model which underestimated the latent heat flux. Through the estimation of energy fluxes and analysis of models' pros and cons, the applicability of CLM and VIC models and need of multi-model application were identified.

A Study on the Amount of the Energy Consumption and $CO_2$ Emission at the Construction Stage in the Apartment Housing using the Input-Output Analysis (산업연관분석을 이용한 공동주택 건설단계의 에너지소비량 및 이산화탄소배출량 산정연구)

  • Kim, Dae-Hee;Kwon, Bo-Min;Choi, Young-Oh;Lee, Kang-Hee
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2006.11a
    • /
    • pp.275-280
    • /
    • 2006
  • The protection of the environment is one of today's key demanding international activities and interests. All of aspects including industry, economy and society should be changed into environmental friendly industries. The building is not exception in this trend. What is not generally realized is that building, in the lifecycle of construction, use and demolition, account for large construction, not considered with environment impact and conservation in the lifecycle. Expecially, the construction materials and components used in the construction stage has much embodied energy. And much $CO_2$ emit on the production of the construction material and component. The energy use and $CO_2$ emission would continuously diminish the limited natural resources and impact the environment such as ozon layer destruction. In this paper, it studied the estimation of the amount of energy use and $CO_2$ emission in the building construction stage, it would provide the estimation process and applied with the multifamily housing.

  • PDF

Table-based Effective Estimation of Residual Energy for Battery-based Wireless Sensor System (배터리기반 무선 센서시스템을 위한 테이블기반 잔여 에너지양 추정기법)

  • Kim, Jae-Ung;Noh, Dong-Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.55-63
    • /
    • 2014
  • Up to date, numerous studies on wireless sensor networks have been performed to overcome the Energy-Constraint of the sensor system. Existing schemes for estimating the residual energy have considered only voltage of sensor system. However battery performance in the real is affected by temperature and load. In this paper we introduce more accurate scheme, for the use in wireless sensor node, based on the interpolation of lookup tables which allow for temperature and load characteristics, as well as battery voltage.

Scheduling and Cost Estimation Simulation for Transportation and Installation of the Offshore Monopile Wind Turbines (모노파일 해상풍력발전의 이송과 설치를 위한 일정계획 및 비용분석 시뮬레이션)

  • Kim, Boram;Son, Myeong-Jo;Jang, Wangseok;Kim, Tae-Wan;Hong, Keyyong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.2
    • /
    • pp.193-209
    • /
    • 2015
  • For reasons such as global warming, depletion of fossil fuels and the danger of nuclear energy the research and development of renewable energy is actively underway. Wind energy has advantages over another renewable energy in terms of location requirements, energy efficiency and reliability. Nowadays the research and development area is expanded to offshore because it can supply more wind reliability and free from noise pollution. In this study, the monopile offshore wind turbine transportation and installation (T&I) process are investigated. In addition, the schedule and cost for the process are estimated by discrete event simulation. For the simulation, simulation models for various means of T&I are developed. The optimum T&I execution plan with shortest duration and lowest cost can be found by using different mission start day and T&I means.

Characteristics of Electric-Power Use in Residential Building by Family Composition and Their Income Level (거주자 구성유형 및 소득수준에 따른 주거용 건물 내 전력소비성향)

  • Seo, Hyun-Cheol;Hong, Won-Hwa;Nam, Gyeong-Mok
    • Journal of the Korean housing association
    • /
    • v.23 no.6
    • /
    • pp.31-38
    • /
    • 2012
  • In this paper, we draws tendency of the electricity consumption in residential buildings according to inhabitants Composition types and the level of incomes. it is necessary to reduce energy cost and keep energy security through the electricity demand forecasting and management technology. Progressive social change such as increases of single household, the aging of society, increases in the income level will replace the existing residential electricity demand pattern. However, Only with conventional methods that using only the energy consumption per-unit area are based on Energy final consumption data can not respond to those social and environmental change. To develop electricity demand estimation model that can cope flexibly to changes in the social and environmental, In this paper researches propensity of electricity consumption according to the type of residents configuration, the level of income. First, we typed form of inhabitants in residential that existed in Korea. after that we calculated hourly electricity consumption for each type through National Time-Use Survey performed at the National Statistical Office with considering overlapping behavior. Household appliances and retention standards according to income level is also considered.

Preliminary Design and Performance Analysis of Ducted Tidal Turbine

  • Jo, Chul-Hee;Lee, Kang-Hee;Kim, Do-Youb;Goo, Chan-Hoe
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.3
    • /
    • pp.176-185
    • /
    • 2015
  • Recently, focus has been placed on ocean energy resources because environmental concerns regarding the exploitation of hydrocarbons are increasing. Tidal current power, one of the ocean energy resources, has great potential worldwide due to its high energy density. The flow velocity is the most crucial factor for the power estimation of TCP(Tidal Current Power) system since the kinetic energy of the flow is proportional to the cube of the flow speed. So sufficient inflow speed to generate electricity from the tidal current power is necessary. A duct system can accelerate the flow velocity, which could expand the applicable area of TCP systems to relatively lower velocity sites. The shapes of the inlet and outlet could affect the flow rate inside the duct. To investigate the performance of the duct, various ducts were preliminary designed considering the entire system that is single-point moored TCP system and a series of simulations were carried out using ANSYS-CFX v13.0 CFD software. This study introduces a ducted turbine system that can be moored to a seabed. A performance estimation and comparison of results with conventional tidal converters were summarized in this paper.

Optimal Relocating of Compensators for Real-Reactive Power Management in Distributed Systems

  • Chintam, Jagadeeswar Reddy;Geetha, V.;Mary, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2145-2157
    • /
    • 2018
  • Congestion Management (CM) is an attractive research area in the electrical power transmission with the power compensation abilities. Reconfiguration and the Flexible Alternating Current Transmission Systems (FACTS) devices utilization relieve the congestion in transmission lines. The lack of optimal power (real and reactive) usage with the better transfer capability and minimum cost is still challenging issue in the CM. The prediction of suitable place for the energy resources to control the power flow is the major requirement for power handling scenario. This paper proposes the novel optimization principle to select the best location for the energy resources to achieve the real-reactive power compensation. The parameters estimation and the selection of values with the best fitness through the Symmetrical Distance Travelling Optimization (SDTO) algorithm establishes the proper controlling of optimal power flow in the transmission lines. The modified fitness function formulation based on the bus parameters, index estimation correspond to the optimal reactive power usage enhances the power transfer capability with the minimum cost. The comparative analysis between the proposed method with the existing power management techniques regarding the parameters of power loss, cost value, load power and energy loss confirms the effectiveness of proposed work in the distributed renewable energy systems.

Control-Gain Estimation of Energy Dissipation Control Algorithms (에너지소산 제어 알고리듬의 제어이득 산정)

  • Lee Sang Hyun;Kang Sang Hoon;Min Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.343-350
    • /
    • 2004
  • This study is on control gain estimation of energy dissipation control algorithms. Velocity feedback saturated, bang bang, and energy gain control algorithms are proposed based on the Lyapunov stability theory and their performances are evaluated and compared. Saturation problem is considered in the design of the velocity feedback saturated and energy-gain control algorithms, and chattering problem in bang bang control is solved by using boundary layer. Numerical results show that the proposed control algorithms can dissipate the structural energy induced by wind loads efficiently.

Performance Analysis of Electricity Demand Forecasting by Detail Level of Building Energy Models Based on the Measured Submetering Electricity Data (서브미터링 전력데이터 기반 건물에너지모델의 입력수준별 전력수요 예측 성능분석)

  • Shin, Sang-Yong;Seo, Dong-Hyun
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.627-640
    • /
    • 2018
  • Submetering electricity consumption data enables more detail input of end use components, such as lighting, plug, HVAC, and occupancy in building energy modeling. However, such an modeling efforts and results are rarely tried and published in terms of the estimation accuracy of electricity demand. In this research, actual submetering data obtained from a university building is analyzed and provided for building energy modeling practice. As alternative modeling cases, conventional modeling method (Case-1), using reference schedule per building usage, and main metering data based modeling method (Case-2) are established. Detail efforts are added to derive prototypical schedules from the metered data by introducing variability index. The simulation results revealed that Case-1 showed the largest error as we can expect. And Case-2 showed comparative error relative to Case-3 in terms of total electricity estimation. But Case-2 showed about two times larger error in CV (RMSE) in lighting energy demand due to lack of End Use consumption information.