• 제목/요약/키워드: Energy efficient protocol

검색결과 503건 처리시간 0.022초

REVIEW ON ENERGY EFFICIENT OPPORTUNISTIC ROUTING PROTOCOL FOR UNDERWATER WIRELESS SENSOR NETWORKS

  • Ismail, Nasarudin;Mohamad, Mohd Murtadha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권7호
    • /
    • pp.3064-3094
    • /
    • 2018
  • Currently, the Underwater Sensor Networks (UWSNs) is mainly an interesting area due to its ability to provide a technology to gather many valuable data from underwater environment such as tsunami monitoring sensor, military tactical application, environmental monitoring and many more. However, UWSNs is suffering from limited energy, high packet loss and the use of acoustic communication. In UWSNs most of the energy consumption is used during the forwarding of packet data from the source to the destination. Therefore, many researchers are eager to design energy efficient routing protocol to minimize energy consumption in UWSNs. As the opportunistic routing (OR) is the most promising method to be used in UWSNs, this paper focuses on the existing proposed energy efficient OR protocol in UWSNs. This paper reviews the existing proposed energy efficient OR protocol, classifying them into 3 categories namely sender-side-based, receiver-side-based and hybrid. Furthermore each of the protocols is reviewed in detail, and its advantages and disadvantages are discussed. Finally, we discuss potential future work research directions in UWSNs, especially for energy efficient OR protocol design.

에너지 사용량을 이용한 위치 기반 에너지 효율적인 라우팅 프로토콜 설계 및 구현 (Design and Implementation of A Location-based Energy-Efficient Routing Protocol using Quantity of Energy Consumed)

  • 장유진;김용기;장재우
    • 한국공간정보시스템학회 논문지
    • /
    • 제12권1호
    • /
    • pp.1-9
    • /
    • 2010
  • 최근, 무선 센서 네트워크 기술은 유비쿼터스 컴퓨팅 시대의 핵심 기반 기술의 하나로 인식되고 있다. 센서 노드는 제한된 배터리 용량을 가지기 때문에, 장기간 생존하기 위해서 노드들의 동작에 적은 에너지를 소모해야한다. 따라서, 에너지를 효율적으로 사용하는 프로토콜이 필수적이다. 이를 위해 본 논문 에서는 에너지 사용량을 고려하여 에너지 소모가 적은 경로를 설정하는 위치 기반의 에너지 효율적인 라우팅 프로토콜을 제안한다. 아울러 메시지 전송이 원활하지 못한 경우를 처리하는 경로 재설정 알고리즘을 제안한다. 마지막으로 TOSSIM을 이용한 성능평가를 통해, 제안한 프로토콜이 에너지 효율성 측면에서 기존 위치기반 라우팅 프로토콜 보다 우수함을 보인다.

Efficient routing in multicast mesh by using forwarding nodes and weighted cost function

  • Vyas, Kapila;Khuteta, Ajay;Chaturvedi, Amit
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권12호
    • /
    • pp.5928-5947
    • /
    • 2019
  • Multicast Mesh based Mobile Ad-hoc NETworks (MANETs) provide efficient data transmission in energy restraint areas without a fixed infrastructure. In this paper, the authors present an improved version of protocol SLIMMER developed by them earlier, and name it SLIMMER-SN. Most mesh-based protocols suffer from redundancy; however, the proposed protocol controls redundancy through the concept of forwarding nodes. The proposed protocol uses remaining energy of a node to decide its energy efficiency. For measuring stability, a new metric called Stability of Node (SN) has been introduced which depends on transmission range, node density and node velocity. For data transfer, a weighted cost function selects the most energy efficient nodes / most stable nodes or a weighted combination of both. This makes the node selection criteria more dynamic. The protocol works in two steps: (1) calculating SN and (2) using SN value in the weighted cost function for selection of nodes. The study compared the proposed protocol, with other mesh-based protocols PUMA and SLIMMER, based on packet delivery ratio (PDR), throughput, end-to-end delay and average energy consumption under different simulation conditions. Results clearly demonstrate that SLIMMER-SN outperformed both PUMA and SLIMMER.

센서 네트워크에서 에너지 효율적인 동적 S-MAC 프로토콜 (Energy Efficient Dynamic S-MAC Protocol for Sensor Networks)

  • 유대석;최승식
    • 한국통신학회논문지
    • /
    • 제33권7B호
    • /
    • pp.502-509
    • /
    • 2008
  • 무선 센서 네트워크에서는 기본적으로 교환이나 충전이 어려운 베터리로 동작하는 센서 노드들로 구성된다. 따라서 센서 노드들의 에너지 소모를 줄이는 것이 무선 센서 네트워크에서는 중요한 과제이다. 이러한 에너지 효율적인 MAC 프로토콜을 구현하기 위해 기존의 IEEE 802.11 Protocol을 기반으로 휴면 기간의 에너지를 효율적으로 관리하는 Sensor MAC(이하 S-MAC) Protocol이 제안되었다. 본 논문에서는 에너지 효율적 스케줄링 기반의 기존 S-MAC을 기반으로 네트워크 트래픽에 동적으로 동작하기 위한 동적 S-MAC을 제안하였다. 동적 S-MAC 프로토콜은 네트워크 트래픽 상황에 따라 프레임 주기를 변경함으로써 S-MAC의 에너지 효율을 개선하였다. NS2 시뮬레이션을 통해 동적 S-MAC과 기존 S-MAC의 성능을 평가하였다.

MAP : A Balanced Energy Consumption Routing Protocol for Wireless Sensor Networks

  • Azim, Mohamed Mostafa A.
    • Journal of Information Processing Systems
    • /
    • 제6권3호
    • /
    • pp.295-306
    • /
    • 2010
  • Network lifetime is a critical issue in Wireless Sensor Networks (WSNs). In which, a large number of sensor nodes communicate together to perform a predetermined sensing task. In such networks, the network life time depends mainly on the lifetime of the sensor nodes constituting the network. Therefore, it is essential to balance the energy consumption among all sensor nodes to ensure the network connectivity. In this paper, we propose an energy-efficient data routing protocol for wireless sensor networks. Contrary to the protocol proposed in [6], that always selects the path with minimum hop count to the base station, our proposed routing protocol may choose a longer path that will provide better distribution of the energy consumption among the sensor nodes. Simulation results indicate clearly that compared to the routing protocol proposed in [6], our proposed protocol evenly distributes the energy consumption among the network nodes thus maximizing the network life time.

WSN 환경에서 이중체인 구성을 통한 LECEEP 프로토콜 개선(A-LECEEP) (Improvement of LECEEP Protocol through Dual Chain Configuration in WSN Environment(A-LECEEP, Advanced LEACH based Chaining Energy Efficient Protocol))

  • 김찬혁;권태욱
    • 한국멀티미디어학회논문지
    • /
    • 제24권8호
    • /
    • pp.1068-1075
    • /
    • 2021
  • Wireless sensor network (WSN) can be usefully used in battlefields requiring rapid installation and operation by enabling surveillance and reconnaissance using small sensors in areas where any existing network infrastructure is not formed. As WSN uses battery, energy efficiency acts as a very important issue in network survivability. Layer-based routing protocols have been studied a lot in the aspect of energy efficiency. Many research selected LEACH and PEGASIS protocols as their comparison targets. This study examines the two protocols and LECEEP, a protocol designed by combining their advantages, and proposes a new protocol, A-LECEEP, which is more energy efficient than the others. The proposed protocol can increase energy efficiency compared to the existing ones by eliminating unnecessary transmissions with multiple chains configuration.

멀티 홉 무선센서네트워크에서 에너지와 지연에 효율적인 하이브리드 MAC 프로토콜 (An Energy and Delay Efficient Hybrid MAC Protocol for Multi-Hop Wireless Sensor Networks)

  • 전준헌;김성철
    • 한국정보통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.471-476
    • /
    • 2015
  • 본 논문에서는 멀티 홉 무선 센서 네트워크에서 에너지 효율적인 하이브리드(hybrid) MAC 프로토콜을 제안한다. 제안하는 MAC 프로토콜은 경쟁방식(CSMA) 방식과 비경쟁방식(TDMA) 방식을 혼합하여 사용한다. 싱크 노드로부터 멀리 떨어진 센서 노드들은 주로 데이터 측정 임무를 담당하기 때문에 데이터 발생 및 전송 트래픽이 적어 구현이 간단한 경쟁방식을 사용하는 것이 유리하다. 그러나 싱크 노드와 가까운 노드들은 데이터 측정 뿐 만 아니라 relay 노드로 동작하기 때문에 많은 데이터를 전송할 필요가 있으므로 경쟁방식을 사용하면 데이터 패킷의 충돌 및 전송지연이 증가하게 된다. 본 논문에서는 싱크 노드와 1홉 거리의 센서 노드들은 마치 비경쟁방식처럼 슬롯을 할당하여 데이터 패킷을 전송하는 메커니즘을 제안한다. 제안하는 메커니즘은 에너지 및 지연에 효율적인 장점을 가진다. 제안된 MAC 프로토콜은 유사한 다른 프로토콜에 비해 데이터 패킷 전송 지연에서 더 좋은 성능을 보였다.

MCRO-ECP: Mutation Chemical Reaction Optimization based Energy Efficient Clustering Protocol for Wireless Sensor Networks

  • Daniel, Ravuri;Rao, Kuda Nageswara
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권7호
    • /
    • pp.3494-3510
    • /
    • 2019
  • Wireless sensor networks encounter energy saving as a major issue as the sensor nodes having no rechargeable batteries and also the resources are limited. Clustering of sensors play a pivotal role in energy saving of the deployed sensor nodes. However, in the cluster based wireless sensor network, the cluster heads tend to consume more energy for additional functions such as reception of data, aggregation and transmission of the received data to the base station. So, careful selection of cluster head and formation of cluster plays vital role in energy conservation and enhancement of lifetime of the wireless sensor networks. This study proposes a new mutation chemical reaction optimization (MCRO) which is an algorithm based energy efficient clustering protocol termed as MCRO-ECP, for wireless sensor networks. The proposed protocol is extensively developed with effective methods such as potential energy function and molecular structure encoding for cluster head selection and cluster formation. While developing potential functions for energy conservation, the following parameters are taken into account: neighbor node distance, base station distance, ratio of energy, intra-cluster distance, and CH node degree to make the MCRO-ECP protocol to be potential energy conserver. The proposed protocol is studied extensively and tested elaborately on NS2.35 Simulator under various senarios like varying the number of sensor nodes and CHs. A comparative study between the simulation results derived from the proposed MCRO-ECP protocol and the results of the already existing protocol, shows that MCRO-ECP protocol produces significantly better results in energy conservation, increase network life time, packets received by the BS and the convergence rate.

Interactive Multipath Routing Protocol for Improving the Routing Performance in Wireless Sensor Networks

  • Jung, Kwansoo
    • 디지털산업정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.79-90
    • /
    • 2015
  • Multipath routing technique is recognized as one of the effective approaches to improve the reliability of data forwarding. However, the traditional multipath routing focuses only on how many paths are needed to ensure a desired reliability. For this purpose, the protocols construct additional paths and thus cause significant energy consumption. These problems have motivated the study for the energy-efficient and reliable data forwarding. Thus, this paper proposes an energy-efficient concurrent multipath routing protocol with a small number of paths based on interaction between paths. The interaction between paths helps to reinforce the multipath reliability by making efficient use of resources. The protocol selects several nodes located in the radio overlapped area between a pair of paths as bridge nodes for the path-interaction. In order to operate the bridge node efficiently, when the transmission failure has detected by overhearing at each path, it performs recovery transmission to recover the path failure. Simulation results show that proposed protocol is superior to the existing multipath protocols in terms of energy consumption and delivery reliability.

Medium Access Control with Dynamic Frame Length in Wireless Sensor Networks

  • Yoo, Dae-Suk;Choi, Seung-Sik
    • Journal of Information Processing Systems
    • /
    • 제6권4호
    • /
    • pp.501-510
    • /
    • 2010
  • Wireless sensor networks consist of sensor nodes which are expected to be battery-powered and are hard to replace or recharge. Thus, reducing the energy consumption of sensor nodes is an important design consideration in wireless sensor networks. For the implementation of an energy-efficient MAC protocol, a Sensor-MAC based on the IEEE 802.11 protocol, which has energy efficient scheduling, has been proposed. In this paper, we propose a Dynamic S-MAC that adapts dynamically to the network-traffic state. The dynamic S-MAC protocol improves the energy consumption of the S-MAC by changing the frame length according to the network-traffic state. Using an NS-2 Simulator, we compare the performance of the Dynamic S-MAC with that of the S-MAC protocol.