• Title/Summary/Keyword: Energy efficient MAC protocol

Search Result 112, Processing Time 0.028 seconds

New Approach to MAC Protocol for Multiple AUV (수중 Multiple AUV를 위한 MAC 프로토콜 설계)

  • Cho, A-Ra;Park, Jong-Won;Kim, Seung-Geun;Choi, Young-Chol;Lim, Yong-Kon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.213-216
    • /
    • 2007
  • The paper deals with a approach to underwater acoustic based Ad-hoc communication, which allows major design strategies for Media Access Control (MAC) within a group of the autonomous underwater vehicles(AUV). The proposed MAC aims at deploying AUV-centric star topology, which minimizes overhead of sensor nodes and improves energy-efficiency. Furthermore, that is also well under long and unknown propagation delays of the underwater acoustic medium. The implemented MAC protocol makes it easier to achieve frame synchronization than TDMA due to deploying localized schedule time, in addition to saving energy consumption by letting nodes sleep. It is also superior to MACA and MACAW in terms of propagation delay. This scalable centralized protocol has the potential to serve as a primer for development of MAC protocol for future underwater acoustic based ad-hoc networks.

  • PDF

A Consideration for a Protocol Supporting Tire Pressure Monitoring System (타이어 압력 모니터링 시스템의 호환성을 지원하는 프로토콜 고찰)

  • Bae, Byoung-Chul;Seo, Hae-Moon;Lee, In-Soo;Nam, Yoon-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.6
    • /
    • pp.335-344
    • /
    • 2011
  • The Tire Pressure Monitoring System(TPMS) is often used recently. However, the standards and functions are very different. Even though the regulation requires all vehicles install the TPMS, there is no a standard of a Physical and Media access control protocol which provides compatibility with other systems. In this paper, we propose a MAC protocol based on the international standard and an energy efficient hybrid RF system platform. The MAC protocol provides compatibility of the TPMS with other systems and the RF system platform reduces energy consumption significantly.

A MAC Protocol Considering Traffic Loads Information For a Clustered Wireless Sensor Networks (클러스터 기반의 무선 센서 네트워크 환경에서 트래픽 부하 정보를 고려한 MAC 프로토콜)

  • Kim, Seong-Cheol;Kim, Hyung-Jue
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.3
    • /
    • pp.113-119
    • /
    • 2009
  • In this paper, we proposed an efficient TDMA scheduling algorithm for a clustered Wireless Sensor Network. Since some previous algorithms used unnecessary idle period and schedule period in each frame. It became an overhead that might consume unexpected energy and delay data transmission. To solve this problem, a dynamic scheduling algorithm according to the number of member nodes and node traffic load within a cluster was suggested. Our proposed DS-MAC(Dynamic Scheduling MAC) could save energy and reduce transmission delay Then DS-MAC was analyzed mathematically to compare with the previous algorithms.

Performance Evaluation of Traffic Adaptive Sleep based MAC in Clustered Wireless Sensor Networks (클러스터 기반 무선 센서 망에서 트래픽 적응적 수면시간 기반 MAC 프로토콜 성능 분석)

  • Xiong, Hongyu;So, Won-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.5
    • /
    • pp.107-116
    • /
    • 2011
  • In this paper, a traffic adaptive sleep based medium access control (TAS-MAC) protocol for wireless sensor networks (WSNs) is proposed. The protocol aims for WSNs which consist of clustered sensor nodes and is based on TDMA-like schema. It is a typical schedule based mechanism which is adopted in previous protocols such as LEACH and Bit-Map Assisted MAC. The proposed MAC, however, considers unexpected long silent period in which sensor nodes have no data input and events do not happen in monitoring environment. With the simple traffic measurement, the TAS-MAC eliminates scheduling phases consuming energy in previous centralized approaches. A frame structure of the protocol includes three periods, investigation (I), transmission (T), and sleep-period (S). Through the I-period, TAS-MAC aggregates current traffic information from each end node and dynamically decide the length of sleep period to avoid energy waste in long silent period. In spite of the energy efficiency of this approach, the delay of data might increase. Thus, we propose an advanced version of TAS-MAC as well, each node in cluster sends one or more data packets to cluster head during the T-period of a frame. Through simulation, the performance in terms of energy consumption and transmission delay is evaluated. By comparing to BMA-MAC, the results indicate the proposed protocol is more energy efficient with tolerable expense in latency, especially in variable traffic situation.

An Enhanced Cross-layer Geographic Forwarding Scheme for Wireless Sensor Networks (무선 센서 네트워크에서 향상된 교차 계층 방식의 위치기반 데이터 전달 기법)

  • Kim, Jae-Hyun;Kim, Seog-Gyu;Lee, Jai-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8B
    • /
    • pp.712-721
    • /
    • 2012
  • In this paper, we propose an Enhanced cross-layer Geographic Forwarding (EGF) protocol for wireless sensor networks (WSNs). EGF uses an optimal back-off time to make the packet forwarding decisions using only source and destination's location information and energy cost without information about neighbor nodes' location or the number of one hop neighbor nodes. EGF is also a cross-layer protocol by combining efficient asynchronous MAC and geographic routing protocol. The proposed protocol can find optimal next hop location quickly without broadcasting node's location update and with minimizing overhead. In our performance evaluation, EGF has better performance in terms of packet success ratio, energy efficiency and end-to-end delay in wireless sensor networks.

Design, Analysis and Implementation of Energy-efficient Broadcast MAC Protocols for Wireless Sensor Networks

  • Kang, Young-Myoung;Lim, Sang-Soon;Yoo, Joon;Kim, Chong-Kwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.6
    • /
    • pp.1113-1132
    • /
    • 2011
  • In wireless sensor networks (WSNs), most energy saving asynchronous MAC protocols are custom tailored for unicast communications only. However, broadcast protocols are very commonly used in WSNs for a variety of functionalities, such as gathering network topology information, event monitoring and query processing. In this paper, we propose a novel low-power asynchronous broadcast MAC protocol called Alarm Broadcast (A-CAST). A-CAST employs the strobe preamble that specifies the residual waiting time for the following data transmission. Each receiver goes back to sleep upon hearing the strobe preamble for the residual time duration, to conserve energy and to wake up just before data transmission starts. We compute the energy consumption of A-CAST via rigorous mathematical analysis. The analytic results show that A-CAST outperforms B-CAST, a simple broadcast extension of the well-known B-MAC. We also implement A-CAST on sensor motes and evaluated its performance through real experiments. Our experimental results show that A-CAST reduces the energy consumption by up to 222% compared to the previously proposed protocols.

An Energy-Efficient MAC protocol for WUSB over WBAN Protocol (인체영역 네트워크와 무선 USB의 결합을 위한 에너지 효율적인 MAC 프로토콜)

  • Kim, Jin Woo;Kim, Beom Mu;Jeon, Seong Min;Rajeev, Kumar Piyare;Shiu, Kumar;Bold, Sanja;Battsetsrg, Ganbaatar;Lee, Sung Ro
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.429-431
    • /
    • 2013
  • In this paper, we propose a low-power hibernation technique (LHT) for WUSB over IEEE 802.15.6 hierarchical MAC to improve its energy efficiency. Simulation results show that the LHT also integrate WUSB transactions and WBAN traffic efficiently while it achieves high energy efficiency.

  • PDF

An Energy-efficient MAC protocol for Hierarchical Sensor Network (에너지 효율적인 계층적 센서 네트워크의 MAC 프로토콜)

  • Son Jin-Hee;Lee Hyung-Keun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06d
    • /
    • pp.118-120
    • /
    • 2006
  • 무선 센서 네트워크에서는 에너지 소모를 최소화 하는 것이 매우 중요한 연구 과제이며, 많은 연구들을 통하여 효율적인 방법들이 제안 되었고, 이 방법들은 대부분 단일 계층 상에서의 최적화에 초점이 맞춰져 있었다. 본 논문에서는 네트워크 계층의 정보를 이용하는 새로운 MAC 프로토콜을 제안한다. 여기서 제안하는 프로토콜은 MAC 계층의 송/수신 단의 비활성화 상태를 최대화 하고 제어 패킷의 수를 최소화 하는 방법으로 클러스터 기반의 경로 탐색 기법을 이용한다.

  • PDF

Efficient Packet Transmission Mechanism for Multi-hop Wireless Sensor Networks (멀티-홉 무선 센서 네트워크에서 효율적인 패킷 전송 메커니즘)

  • Jeon, Jun Heon;Kim, Seong Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.492-498
    • /
    • 2015
  • In general, data packets from sensor nodes are transferred to the sink node in a wireless sensor networks. So many data packets are gathered around the sink node, resulting in significant packet collision and delay. In this paper, we propose an efficient packet transmission mechanism for multi-hop wireless sensor networks. The proposed mechanism is composed of two modes. One mode works between sink node and 1-hop nodes from sink. In this mode, data packets are transmitted in predefined time slots to reduce collisions. The other mode works between other nodes except sink node. In this mode, duplicated packets from neighbor nodes can be detected and dropped using some control signals. Our numerical analysis and simulation results show that our mechanism outperforms X-MAC and RI-MAC in terms of energy consumption and transmission delay.

An Energy-Efficient MAC Protocol for Wireless Wearable Computer Systems

  • Beh, Jounghoon;Hur, Kyeong;Kim, Wooil;Joo, Yang-Ick
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.7-11
    • /
    • 2013
  • Wearable computer systems use the wireless universal serial bus (WUSB), which refers to USB technology that is merged with WiMedia physical layer and medium access control layer (PHY/MAC) technical specifications. WUSB can be applied to wireless personal area network (WPAN) applications as well as wired USB applications such as PAN. WUSB specifications have defined high-speed connections between a WUSB host and WUSB devices for compatibility with USB 2.0 specifications. In this paper, we focus on an integrated system with a WUSB over an IEEE 802.15.6 wireless body area network (WBAN) for wireless wearable computer systems. Due to the portable and wearable nature of wearable computer systems, the WUSB over IEEE 802.15.6 hierarchical medium access control (MAC) protocol has to support power saving operations and integrate WUSB transactions with WBAN traffic efficiently. In this paper, we propose a low-power hibernation technique (LHT) for WUSB over IEEE 802.15.6 hierarchical MAC to improve its energy efficiency. Simulation results show that the LHT also integrates WUSB transactions and WBAN traffic efficiently while it achieves high energy efficiency.