• Title/Summary/Keyword: Energy efficiency optimization

Search Result 632, Processing Time 0.031 seconds

Heat transfer analysis in sub-channels of rod bundle geometry with supercritical water

  • Shitsi, Edward;Debrah, Seth Kofi;Chabi, Silas;Arthur, Emmanuel Maurice;Baidoo, Isaac Kwasi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.842-848
    • /
    • 2022
  • Parametric studies of heat transfer and fluid flow are very important research of interest because the design and operation of fluid flow and heat transfer systems are guided by these parametric studies. The safety of the system operation and system optimization can be determined by decreasing or increasing particular fluid flow and heat transfer parameter while keeping other parameters constant. The parameters that can be varied in order to determine safe and optimized system include system pressure, mass flow rate, heat flux and coolant inlet temperature among other parameters. The fluid flow and heat transfer systems can also be enhanced by the presence of or without the presence of particular effects including gravity effect among others. The advanced Generation IV reactors to be deployed for large electricity production, have proven to be more thermally efficient (approximately 45% thermal efficiency) than the current light water reactors with a thermal efficiency of approximately 33 ℃. SCWR is one of the Generation IV reactors intended for electricity generation. High Performance Light Water Reactor (HPLWR) is a SCWR type which is under consideration in this study. One-eighth of a proposed fuel assembly design for HPLWR consisting of 7 fuel/rod bundles with 9 coolant sub-channels was the geometry considered in this study to examine the effects of system pressure and mass flow rate on wall and fluid temperatures. Gravity effect on wall and fluid temperatures were also examined on this one-eighth fuel assembly geometry. Computational Fluid Dynamics (CFD) code, STAR-CCM+, was used to obtain the results of the numerical simulations. Based on the parametric analysis carried out, sub-channel 4 performed better in terms of heat transfer because temperatures predicted in sub-channel 9 (corner subchannel) were higher than the ones obtained in sub-channel 4 (central sub-channel). The influence of system mass flow rate, pressure and gravity seem similar in both sub-channels 4 and 9 with temperature distributions higher in sub-channel 9 than in sub-channel 4. In most of the cases considered, temperature distributions (for both fluid and wall) obtained at 25 MPa are higher than those obtained at 23 MPa, temperature distributions obtained at 601.2 kg/h are higher than those obtained at 561.2 kg/h, and temperature distributions obtained without gravity effect are higher than those obtained with gravity effect. The results show that effects of system pressure, mass flowrate and gravity on fluid flow and heat transfer are significant and therefore parametric studies need to be performed to determine safe and optimum operating conditions of fluid flow and heat transfer systems.

Design and Environmental/Economic Performance Evaluation of Wastewater Treatment Plants Using Modeling Methodology (모델링 기법을 이용한 하수처리 공정 설계와 환경성 및 경제성 평가)

  • Kim, MinHan;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.610-618
    • /
    • 2008
  • It is not easy to compare the treatment processes and find an optimum operating condition by the experiments due to influent conditions, treatment processes, various operational conditions and complex factors in real wastewater treatment system and also need a lot of time and costs. In this paper, the activated sludge models are applied to four principal biological wastewater treatment processes, $A_2O$(anaerobic/anoxic/oxic process), Bardenpho(4 steps), VIP(Virginia Initiative Plant) and UCT(University of Cape Town), and are used to compare their environmental and economic assessment for four key processes. In order to evaluate each processes, a new assessment index which can compare the efficiency of treatment performances in various processes is proposed, which considers both environmental and economic cost. It shows that the proposed index can be used to select the optimum processes among the candidate treatment processes as well as to find the optimum condition in each process. And it can find the change of economic and environmental index under the changes of influent flowrate and aerobic reaction size and predict the optimum index under various operation conditions.

A Study on the Optimal Installation of Ducted Fan Ventilation System in Long Mine Airways - Focused on the Wall Separation Distance and the Gap Length between Ducts (장대 광산갱도내 풍관 접속 통기선풍기 최적 설치 방안연구 - 벽면과 풍관간의 이격거리 중심으로)

  • Lee, Chang Woo;Nguyen, Van Duc
    • Tunnel and Underground Space
    • /
    • v.27 no.1
    • /
    • pp.12-25
    • /
    • 2017
  • In local underground mines heavily depending on the natural ventilation, ducted fan auxiliary ventilation system is strongly recommended instead of the total mine ventilation system requiring large capital and operating costs. Optimizing the installation of ducted fans in series in long large-opening mines is required to assure the economy and efficiency of the ventilation system. The two most critical design parameters for optimization are the wall separation distance and gap length between adjoining ducts. This study aims at deriving the optimal values for those two parameters concerning the economic and environmental aspects through the extensive CFD analysis, which minimizes pressure loss, leakage and entrainment of the contaminated air in the gap space. The ranges of the wall separation distance and gap length for study are selected by taking into consideration the existing recommendations and guidelines. The ultimate goal is to optimize the auxiliary ventilation system using ducted fans in series to provide a reliable and efficient solution to maintain clean and safe workplace environment in local long underground mines.

Evaluation of Image Qualities for a Digital X-ray Imaging System Based on Gd$_2$O$_2$S(Tb) Scintillator and Photosensor Array by Using a Monte Carlo Imaging Simulation Code (몬테카를로 영상모의실험 코드를 이용한 Gd$_2$O$_2$S(Tb) 섬광체 및 광센서 어레이 기반 디지털 X-선 영상시스템의 화질평가)

  • Jung, Man-Hee;Jung, In-Bum;Park, Ju-Hee;Oh, Ji-Eun;Cho, Hyo-Sung;Han, Bong-Soo;Kim, Sin;Lee, Bong-Soo;Kim, Ho-Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.253-259
    • /
    • 2004
  • in this study, we developed a Monte Carlo imaging simulation code written by the visual C$\^$++/ programing language for design optimization of a digital X-ray imaging system. As a digital X-ray imaging system, we considered a Gd$_2$O$_2$S(Tb) scintillator and a photosensor array, and included a 2D parallel grid to simulate general test renditions. The interactions between X-ray beams and the system structure, the behavior of lights generated in the scintillator, and their collection in the photosensor array were simulated by using the Monte Carlo method. The scintillator thickness and the photosensor array pitch were assumed to 66$\mu\textrm{m}$ and 48$\mu\textrm{m}$, respertively, and the pixel format was set to 256 x 256. Using the code, we obtained X-ray images under various simulation conditions, and evaluated their image qualities through the calculations of SNR (signal-to-noise ratio), MTF (modulation transfer function), NPS (noise power spectrum), DQE (detective quantum efficiency). The image simulation code developed in this study can be applied effectively for a variety of digital X-ray imaging systems for their design optimization on various design parameters.

Optimal Operation of Gas Engine for Biogas Plant in Sewage Treatment Plant (하수처리장 바이오가스 플랜트의 가스엔진 최적 운영 방안)

  • Kim, Gill Jung;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.2
    • /
    • pp.18-35
    • /
    • 2019
  • The Korea District Heating Corporation operates a gas engine generator with a capacity of $4500m^3 /day$ of biogas generated from the sewage treatment plant of the Nanji Water Recycling Center and 1,500 kW. However, the actual operation experience of the biogas power plant is insufficient, and due to lack of accumulated technology and know-how, frequent breakdown and stoppage of the gas engine causes a lot of economic loss. Therefore, it is necessary to prepare technical fundamental measures for stable operation of the power plant In this study, a series of process problems of the gas engine plant using the biogas generated in the sewage treatment plant of the Nanji Water Recovery Center were identified and the optimization of the actual operation was made by minimizing the problems in each step. In order to purify the gas, which is the main cause of the failure stop, the conditions for establishing the quality standard of the adsorption capacity of the activated carbon were established through the analysis of the components and the adsorption test for the active carbon being used at present. In addition, the system was applied to actual operation by applying standards for replacement cycle of activated carbon to minimize impurities, strengthening measurement period of hydrogen sulfide, localization of activated carbon, and strengthening and improving the operation standards of the plant. As a result, the operating performance of gas engine # 1 was increased by 530% and the operation of the second engine was increased by 250%. In addition, improvement of vent line equipment has reduced work process and increased normal operation time and operation rate. In terms of economic efficiency, it also showed a sales increase of KRW 77,000 / year. By applying the strengthening and improvement measures of operating standards, it is possible to reduce the stoppage of the biogas plant, increase the utilization rate, It is judged to be an operational plan.

Optimization of ZnO-based transparent conducting oxides for thin-film solar cells based on the correlations of structural, electrical, and optical properties (ZnO 박막의 구조적, 전기적, 광학적 특성간의 상관관계를 고려한 박막태양전지용 투명전극 최적화 연구)

  • Oh, Joon-Ho;Kim, Kyoung-Kook;Song, Jun-Hyuk;Seong, Tae-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.42.2-42.2
    • /
    • 2010
  • Transparent conducting oxides (TCOs) are of significant importance for their applications in various devices, such as light-emitting diodes, thin-film solar cells, organic light-emitting diodes, liquid crystal displays, and so on. In order for TCOs to contribute to the performance improvement of these devices, TCOs should have high transmittance and good electrical properties simultaneously. Sn-doped $In_2O_3$ (ITO) is the most commonly used TCO. However, indium is toxic and scarce in nature. Thus, ZnO has attracted a lot of attention because of the possibility for replacing ITO. In particular, group III impurity-doped ZnO showed the optoelectronic properties comparable to those of ITO electrodes. Al-doped ZnO exhibited the best performance among various doped ZnO films because of the high substitutional doping efficiency. However, in order for the Al-doped ZnO to replace ITO in electronic devices, their electrical and optical properties should further significantly be improved. In this connection, different ways such as a variation of deposition conditions, different deposition techniques, and post-deposition annealing processes have been investigated so far. Among the deposition methods, RF magnetron sputtering has been extensively used because of the easiness in controlling deposition parameters and its fast deposition rate. In addition, when combined with post-deposition annealing in a reducing ambient, the optoelectronic properties of Al-doped ZnO films were found to be further improved. In this presentation, we deposited Al-doped ZnO (ZnO:$Al_2O_3$ = 98:2 wt%) thin films on the glass and sapphire substrates using RF magnetron sputtering as a function of substrate temperature. In addition, the ZnO samples were annealed in different conditions, e.g., rapid thermal annealing (RTA) at $900^{\circ}C$ in $N_2$ ambient for 1 min, tube-furnace annealing at $500^{\circ}C$ in $N_2:H_2$=9:1 gas flow for 1 hour, or RTA combined with tube-furnace annealing. It is found that the mobilities and carrier concentrations of the samples are dependent on growth temperature followed by one of three subsequent post-deposition annealing conditions.

  • PDF

Study on Optimization of Detection System of Prompt Gamma Distribution for Proton Dose Verification (양성자 선량 분포 검증을 위한 즉발감마선 분포측정 장치 최적화 연구)

  • Lee, Han Rim;Min, Chul Hee;Park, Jong Hoon;Kim, Seong Hoon;Kim, Chan Hyeong
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.162-168
    • /
    • 2012
  • In proton therapy, in vivo dose verification is one of the most important parts to fully utilize characteristics of proton dose distribution concentrating high dose with steep gradient and guarantee the patient safety. Currently, in order to image the proton dose distribution, a prompt gamma distribution detection system, which consists of an array of multiple CsI(Tl) scintillation detectors in the vertical direction, a collimator, and a multi-channel DAQ system is under development. In the present study, the optimal design of prompt gamma distribution detection system was studied by Monte Carlo simulations using the MCNPX code. For effective measurement of high-energy prompt gammas with enough imaging resolution, the dimensions of the CsI(Tl) scintillator was determined to be $6{\times}6{\times}50mm^3$. In order to maximize the detection efficiency for prompt gammas while minimizing the contribution of background gammas generated by neutron captures, the hole size and the length of the collimator were optimized as $6{\times}6mm^2$ and 150 mm, respectively. Finally, the performance of the detection system optimized in the present study was predicted by Monte Carlo simulations for a 150 MeV proton beam. Our result shows that the detection system in the optimal dimensions can effectively measure the 2D prompt gamma distribution and determine the beam range within 1 mm errors for 150 MeV proton beam.

Highly Efficient Thermal Plasma Scrubber Technology for the Treatment of Perfluorocompounds (PFCs) (과불화합물(PFCs) 가스 처리를 위한 고효율 열플라즈마 스크러버 기술 개발 동향)

  • Park, Hyun-Woo;Cha, Woo Byoung;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.10-17
    • /
    • 2018
  • POU (point of use) scrubbers were applied for the treatment of waste gases including PFCs (perfluorocompounds) exhausted from the CVD (chemical vapor deposition), etching, and cleaning processes of semiconductor and display manufacturing plant. The GWP (global warming potential) and atmosphere lifetime of PFCs are known to be a few thousands higher than that of $CO_2$, and extremely high temperature more than 3,000 K is required to thermally decompose PFCs. Therefore, POU gas scrubbers based on the thermal plasma technology were developed for the effective control of PFCs and industrial application of the technology. The thermal plasma technology encompasses the generation of powerful plasma via the optimization of the plasma torch, a highly stable power supply, and the matching technique between two components. In addition, the effective mixture of the high temperature plasma and waste gases was also necessary for the highly efficient abatement of PFCs. The purpose of this paper was to provide not only a useful technical information of the post-treatment process for the waste gas scrubbing but also a short perspective on R&D of POU plasma gas scrubbers.

Cross-layer Design of Joint Routing and Scheduling for Maximizing Network Capacity of IEEE 802.11s based Multi-Channel SmartGrid NAN Networks (IEEE 802.11s 를 사용한 스마트그리드 NAN 네트워크의 최대 전송 성능을 위한 다중 채널 스케쥴링과 라우팅의 결합 설계)

  • Min, Seok Hong;Kim, Bong Gyu;Lee, Jae Yong;Kim, Byung Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.25-36
    • /
    • 2016
  • The goal of the SmartGrid is to maximize energy efficiency by exchanging bi-directional real-time power information with the help of ICT(Information and Communication Technology). In this paper, we propose a "JRS-MS" (Joint Routing and Scheduling for Multi-channel SmartGrid) algorithm that uses numerical modeling methods in IEEE 802.11s based STDMA multi-channel SmartGrid NAN networks. The proposed algorithm controls the amount of data transmission adaptively at the link layer and finds a high data-rate path which has the least interference between traffic flows in multi-channel SmartGrid NAN networks. The proposed algorithm improve transmission performance by enhancing network utilization. By comparing the results of performance analysis between the proposed algorithm and the JRS-SG algorithm in the previous paper, we showed that the JRS-MS algorithm can improve transmission performance by maximally utilizing given network resources when the number of flows are increasing in the multi-hop NAN wireless mesh networks.

Optimization Strategies for Amine Regeneration Process with Heat-Stable Salt Removal Unit (열 안정성 염 제거장치를 고려한 아민 재생 공정 최적화 전략)

  • Lee, Jesung;Lim, Jonghun;Cho, Hyungtae;Kim, Junghwan
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.575-580
    • /
    • 2020
  • In this study, we simulated an amine regeneration process with heat-stable salts removal unit. We derived the optimal operating conditions considering the flow rate of waste, the removal rate of heat-stable salts, and the loss rate of MDEA (methyl diethanolamine). In the amine regeneration process that absorbs and removes acid gas, heat-stable salt impairs the absorption efficiency of process equipment and amine solution. An ion exchange resin method is to remove heat-stable salts through neutralization by using a strong base solution such as NaOH. The acid gas removal process was established using the Radfrac model, and the equilibrium constant of the reaction was calculated using Gibbs free energy. The removed amine solution is separated and flows to the heat-stable salts remover which is modeled by using the Rstoic model with neutralization reaction. Actual operation data and simulation results were compared and verified, and also a case study was conducted by adjusting the inflow mass of removal unit followed by suggesting optimal conditions.