• 제목/요약/키워드: Energy efficiency optimization

검색결과 623건 처리시간 0.028초

인공신경망을 이용한 VVVF-유도전동기 시스템의 실시간 운전효율 최적제어 (Neural Network Based On-Line Efficiency Optimization Control of a VVVF-Induction Motor Drive)

  • 이승철;최익;권순학;최주엽;송중호
    • 전력전자학회논문지
    • /
    • 제4권2호
    • /
    • pp.166-174
    • /
    • 1999
  • 최적효율제어를 통한 유도전동기의 효율향상은 에너지 절감측면에서 매우 중요하며 인공신경망을 사용하면 시스템의 특성이 충분히 해석되지 않은 상태에서도 우수한 제어특성을 얻을 수 있다. 본 논문은 유도전동기 구동시스템에서 최적 슬립주파수를 추종하는 실시간 인공신경망 회로를 구성하여 운전효율을 최적화하는 제어방법을 제안한다. 제안된 최적 효율제어기는 인공신경망 제어기에 의해 시스템의 비선형성을 포함하여 전동기의 내부손실이 최소가 되는 운전점을 추종한다. 시뮬레이션과 실험을 통하여 기존의 일정v/f 방식에 비하여 고속 경부하시 경제성 있는 에너지 절감효과를 충분히 확보할 수 있었다.

  • PDF

Load Dispatching Control of Multiple-Parallel-Converters Rectifier to Maximize Conversion Efficiency

  • Orihara, Dai;Saitoh, Hiroumi;Higuchi, Yuji;Babasaki, Tadatoshi
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.1132-1136
    • /
    • 2014
  • In the context of increasing electric energy consumption in a data center, energy efficiency improvement is strongly emphasized. In a data center, electric energy is largely consumed by DC power supply system, which is based on a rectifier composed by multiple parallel converters. Therefore, rectifier efficiency must be improved for minimizing loss of DC power supply system. Rectifier efficiency can be modulated by load allocation to converters because converter efficiency depends on input AC power. In this paper, we propose a new control method to maximize rectifier efficiency. The method can control load allocation to converters by introducing active power converter control scheme and start-and-stop of converters. In order to illustrate optimal load allocations in a rectifier, a maximization problem of rectifier efficiency is formulated as a nonlinear optimization one. The problem is solved by Lagrangian relaxation method and the computation results provide the validity of proposed method.

압축기 흡입 머플러 통합적 설계 방안 (Integrated design method of suction muffler in compressor)

  • 왕세명;오승재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.771-772
    • /
    • 2014
  • In this paper, the integrated design method of suction muffler in compressor was studied. There are three things to consider when designing this. First, the transmission loss was maximized to consider the noise reduction. Second, dissipation energy of fluid flow was minimized for energy efficiency. Finally, acoustical resonance frequency of suction muffler was controlled because energy efficiency can be increased by supercharging of refrigerant. Therefore, suction muffler was designed to have the specific resonance frequency. The input impedance was used for designing target acoustical resonance frequency. Topology optimization was used for optimization method.

  • PDF

전기식 하지 외골격 로봇의 구동기 에너지 효율 향상을 위한 클러치 메커니즘 설계 (Design of Clutch Mechanism for Increased Actuator Energy Efficiency of Electrically Actuated Lower Extremity Exoskeleton)

  • 김호준;김완수;임동환;한창수
    • 한국정밀공학회지
    • /
    • 제33권3호
    • /
    • pp.173-181
    • /
    • 2016
  • This paper reports on the development of a roller-cam clutch mechanism. This mechanism can transfer bidirectional torque with high backdrivability, as well as increase actuation energy efficiency, in electrical exoskeleton robots. The developed mechanism was installed at the robot knee joint and unclutched during the swing phase which uses less metabolic energy, thereby functioning as a passive joint. The roller-cam clutch aimed to increase actuation energy efficiency while also producing high backdrivability by generating zero impedance for users during the swing phase. To develop the mechanism, mathematical modeling of the roller-cam clutch was conducted, with the design having more than three safety factors following optimization. Titanium (Ti-6AL-4V) material was used. Finally, modeling verification was done using ANSYS software.

히트펌프를 이용한 고효율 냉풍 대형 건조기 유동 최적설계 (Optimal Flow Design of High-Efficiency, Cold-Flow, and Large-size Heat Pump Dryer)

  • 박상준;이영림
    • 한국생산제조학회지
    • /
    • 제20권5호
    • /
    • pp.547-552
    • /
    • 2011
  • Drying process, corresponding to a final process in the area of food engineering, requires a lot of heat energy. Thus, the energy efficiency is very important for dryers. Since the energy efficiency of heat pump dryers is much higher compared to that of electric dryers or other types of dryers, most of large-capacity dryers are adopting heat pump. In this study, shapes, positions and number of air-circulating fans, guide vanes, air inlet, outlet and top separator were varied for optimization of the flow of a large-capacity heat pump dryer. In addition, fans were modelled with performance curves and porous media were assumed for foods and heat exchangers. The simulation results were applied to the 12-ton dryer and the velocity distributions were experimentally examined. Finally, uniform drying in time was successfully accomplished through frozen pepper experiment.

Energy-efficiency Optimization Schemes Based on SWIPT in Distributed Antenna Systems

  • Xu, Weiye;Chu, Junya;Yu, Xiangbin;Zhou, Huiyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권2호
    • /
    • pp.673-694
    • /
    • 2021
  • In this paper, we intend to study the energy efficiency (EE) optimization for a simultaneous wireless information and power transfer (SWIPT)-based distributed antenna system (DAS). Firstly, a DAS-SWIPT model is formulated, whose goal is to maximize the EE of the system. Next, we propose an optimal resource allocation method by means of the Karush-Kuhn-Tucker condition as well as an ergodic method. Considering the complexity of the ergodic method, a suboptimal scheme with lower complexity is proposed by using an antenna selection scheme. Numerical results illustrate that our suboptimal method is able to achieve satisfactory performance of EE similar to an optimal one while reducing the calculation complexity.

On-demand Allocation of Multiple Mutual-compensating Resources in Wireless Downlinks: a Multi-server Case

  • Han, Han;Xu, Yuhua;Huang, Qinfei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권3호
    • /
    • pp.921-940
    • /
    • 2015
  • In this paper, we investigate the multi-resource allocation problem, a unique feature of which is that the multiple resources can compensate each other while achieving the desired system performance. In particular, power and time allocations are jointly optimized with the target of energy efficiency under the resource-limited constraints. Different from previous studies on the power-time tradeoff, we consider a multi-server case where the concurrent serving users are quantitatively restricted. Therefore user selection is investigated accompanying the resource allocation, making the power-time tradeoff occur not only between the users in the same server but also in different servers. The complex multivariate optimization problem can be modeled as a variant of 2-Dimension Bin Packing Problem (V2D-BPP), which is a joint non-linear and integer programming problem. Though we use state decomposition model to transform it into a convex optimization problem, the variables are still coupled. Therefore, we propose an Iterative Dual Optimization (IDO) algorithm to obtain its optimal solution. Simulations show that the joint multi-resource allocation algorithm outperforms two existing non-joint algorithms from the perspective of energy efficiency.

PSO-based Resource Allocation in Software-Defined Heterogeneous Cellular Networks

  • Gong, Wenrong;Pang, Lihua;Wang, Jing;Xia, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권5호
    • /
    • pp.2243-2257
    • /
    • 2019
  • A heterogeneous cellular network (HCN) is useful to increase the spectral and energy efficiency of wireless networks and to reduce the traffic load from the macro cell. The performance of the secondary user equipment (SUE) is affected by interference from the eNodeB (eNB) in a macro cell. To decrease the interference between the macro cell and the small cell, allocating resources properly is essential to an HCN. This study considers the scenario of a software-defined heterogeneous cellular network and performs the resource allocation process. First, we show the system model of HCN and formulate the optimization problem. The optimization problem is a complex process including power and frequency resource allocation, which imposes an extremely high complexity to the HCN. Therefore, a hierarchical resource allocation scheme is proposed, which including subchannel selection and a particle swarm optimization (PSO)-based power allocation algorithm. Simulation results show that the proposed hierarchical scheme is effective in improving the system capacity and energy efficiency.

다양한 구성의 가스터빈 복합화력발전소에 대한 열역학적 해석과 경제적 최적화 연구 (Thermodynamic analysis and economical optimization on various configuration of Gas Turbine Combined Cycle Power Plants)

  • 김승진;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.225-228
    • /
    • 2012
  • Thermodynamic and economic analysis on various type of gas turbine combined cycle power plants was presented to build up the criteria for optimization of power plants. The efficiency considered about energy level difference between electricity and heat was introduced. The efficiency on power and heat generation of power plants whose have different purpose was estimated and power generation costs on various type of combined heat and power plants : fired/unfired, condensing/non-condensing mode, single/double pressure HRSG.

  • PDF

A Genetic-Algorithm-Based Optimized Clustering for Energy-Efficient Routing in MWSN

  • Sara, Getsy S.;Devi, S. Prasanna;Sridharan, D.
    • ETRI Journal
    • /
    • 제34권6호
    • /
    • pp.922-931
    • /
    • 2012
  • With the increasing demands for mobile wireless sensor networks in recent years, designing an energy-efficient clustering and routing protocol has become very important. This paper provides an analytical model to evaluate the power consumption of a mobile sensor node. Based on this, a clustering algorithm is designed to optimize the energy efficiency during cluster head formation. A genetic algorithm technique is employed to find the near-optimal threshold for residual energy below which a node has to give up its role of being the cluster head. This clustering algorithm along with a hybrid routing concept is applied as the near-optimal energy-efficient routing technique to increase the overall efficiency of the network. Compared to the mobile low energy adaptive clustering hierarchy protocol, the simulation studies reveal that the energy-efficient routing technique produces a longer network lifetime and achieves better energy efficiency.