• 제목/요약/키워드: Energy efficiency optimization

검색결과 620건 처리시간 0.023초

Packet Size Optimization for Improving the Energy Efficiency in Body Sensor Networks

  • Domingo, Mari Carmen
    • ETRI Journal
    • /
    • 제33권3호
    • /
    • pp.299-309
    • /
    • 2011
  • Energy consumption is a key issue in body sensor networks (BSNs) since energy-constrained sensors monitor the vital signs of human beings in healthcare applications. In this paper, packet size optimization for BSNs has been analyzed to improve the efficiency of energy consumption. Existing studies on packet size optimization in wireless sensor networks cannot be applied to BSNs because the different operational characteristics of nodes and the channel effects of in-body and on-body propagation cannot be captured. In this paper, automatic repeat request (ARQ), forward error correction (FEC) block codes, and FEC convolutional codes have been analyzed regarding their energy efficiency. The hop-length extension technique has been applied to improve this metric with FEC block codes. The theoretical analysis and the numerical evaluations reveal that exploiting FEC schemes improves the energy efficiency, increases the optimal payload packet size, and extends the hop length for all scenarios for in-body and on-body propagation.

Optimization of injection molding process for car fender in consideration of energy efficiency and product quality

  • Park, Hong Seok;Nguyen, Trung Thanh
    • Journal of Computational Design and Engineering
    • /
    • 제1권4호
    • /
    • pp.256-265
    • /
    • 2014
  • Energy efficiency is an essential consideration in sustainable manufacturing. This study presents the car fender-based injection molding process optimization that aims to resolve the trade-off between energy consumption and product quality at the same time in which process parameters are optimized variables. The process is specially optimized by applying response surface methodology and using non-dominated sorting genetic algorithm II (NSGA II) in order to resolve multi-object optimization problems. To reduce computational cost and time in the problem-solving procedure, the combination of CAE-integration tools is employed. Based on the Pareto diagram, an appropriate solution is derived out to obtain optimal parameters. The optimization results show that the proposed approach can help effectively engineers in identifying optimal process parameters and achieving competitive advantages of energy consumption and product quality. In addition, the engineering analysis that can be employed to conduct holistic optimization of the injection molding process in order to increase energy efficiency and product quality was also mentioned in this paper.

건물에너지 효율향상을 위한 최적화 툴의 개발 (Development of Optimization Program for the Building Energy Efficiency Improvement)

  • 한수곤;임병찬;허정호;권한솔
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.223-228
    • /
    • 2005
  • This study develops an optimization program to use optimum design of building HVAC system reducing building energy use and cost. Doe20pt developed is an interface program between DOE2 and GenOpt to perform the optimization procedure more easily. The optimum results can be used to estimate the economical efficiency concerning the building management.

  • PDF

Improved AP Deployment Optimization Scheme Based on Multi-objective Particle Swarm Optimization Algorithm

  • Kong, Zhengyu;Wu, Duanpo;Jin, Xinyu;Cen, Shuwei;Dong, Fang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권4호
    • /
    • pp.1568-1589
    • /
    • 2021
  • Deployment of access point (AP) is a problem that must be considered in network planning. However, this problem is usually a NP-hard problem which is difficult to directly reach optimal solution. Thus, improved AP deployment optimization scheme based on swarm intelligence algorithm is proposed to research on this problem. First, the scheme estimates the number of APs. Second, the multi-objective particle swarm optimization (MOPSO) algorithm is used to optimize the location and transmit power of APs. Finally, the greedy algorithm is used to remove the redundant APs. Comparing with multi-objective whale swarm optimization algorithm (MOWOA), particle swarm optimization (PSO) and grey wolf optimization (GWO), the proposed deployment scheme can reduce AP's transmit power and improves energy efficiency under different numbers of users. From the experimental results, the proposed deployment scheme can reduce transmit power about 2%-7% and increase energy efficiency about 2%-25%, comparing with MOWOA. In addition, the proposed deployment scheme can reduce transmit power at most 50% and increase energy efficiency at most 200%, comparing with PSO and GWO.

Two Stage Hybrid Optimization을 사용한 ESS 최적 운전 전략에 대한 연구 (A Study on ESS Optimal Operation Strategy Using Two Stage Hybrid Optimization)

  • 공은경;손진만
    • 전기학회논문지
    • /
    • 제67권7호
    • /
    • pp.833-839
    • /
    • 2018
  • This paper presents an analysis and the methodology of optimal operation strategy of the ESS(Energy Storage System) for reduce electricity charges. Electricity charges consist of a basic charge based on the contract capacity and energy charge according to the power usage. In order to use electrical energy at minimal charge, these two factors are required to be reduced at the same time. QP(Quadratic Programming) is appropriate for minimization of the basic charge and LP(Linear Programmin) is adequate to minimize the energy charge. However, the integer variable have to be introduced for modelling of different charge and discharge efficiency of ESS PCS(Power Conversion System), where MILP(Mixed Integer Linear Programming) can be used. In this case, the extent to which the peak load savings is accomplished should be assumed before the energy charge is minimized. So, to minimize the electricity charge exactly, optimization is sequentially performed in this paper, so-called the Two Stage Hybird optimization, where the extent to which the peak load savings is firstly accomplished through optimization of basic charge and then the optimization of energy charge is performed with different charge and discharge efficiency of ESS PCS. Finally, the proposed method is analyzed quantitatively with other optimization methods.

Artificial Intelligence Application using Nutcracker Optimization Algorithm to Enhance Efficiency & Reliability of Power Systems via Optimal Setting and Sizing of Renewable Energy Sources as Distributed Generations in Radial Distribution Systems

  • Nawaf A. AlZahrani;Mohammad Hamza Awedh;Ali M. Rushdi
    • International Journal of Computer Science & Network Security
    • /
    • 제24권1호
    • /
    • pp.31-44
    • /
    • 2024
  • People have been using more energy in the last years. Several research studies were conducted to develop sustainable energy sources that can produce clean energy to fulfill our energy requirements. Using renewable energy sources helps to decrease the harm to the environment caused by conventional power plants. Choosing the right location and capacity for DG-RESs can greatly impact the performance of Radial Distribution Systems. It is beneficial to have a good and stable electrical power supply with low energy waste and high effectiveness because it improves the performance and reliability of the system. This research investigates the ideal location and size for solar and wind power systems, which are popular methods for producing clean electricity. A new artificial intelligent algorithm called Nutcracker Optimization Algorithm (NOA) is used to find the best solution in two common electrical systems named IEEE 33 and 69 bus systems to examine the improvement in the efficiency & reliability of power system network by reducing power losses, making voltage deviation smaller, and improving voltage stability. Finally, the NOA method is compared with another method called PSO and developed Hybrid Algorithm (NOA+PSO) to validate the proposed algorithm effectiveness and enhancement of both efficiency and reliability aspects.

A Survey of Energy Efficiency Optimization in Heterogeneous Cellular Networks

  • Abdulkafi, Ayad A.;Kiong, Tiong S.;Sileh, Ibrahim K.;Chieng, David;Ghaleb, Abdulaziz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권2호
    • /
    • pp.462-483
    • /
    • 2016
  • The research on optimization of cellular network's energy efficiency (EE) towards environmental and economic sustainability has attracted increasing attention recently. In this survey, we discuss the opportunities, trends and challenges of this challenging topic. Two major contributions are presented namely 1) survey of proposed energy efficiency metrics; 2) survey of proposed energy efficient solutions. We provide a broad overview of the state of-the-art energy efficient methods covering base station (BS) hardware design, network planning and deployment, and network management and operation stages. In order to further understand how EE is assessed and improved through the heterogeneous network (HetNet), BS's energy-awareness and several typical HetNet deployment scenarios such as macrocell-microcell and macrocell-picocell are presented. The analysis of different HetNet deployment scenarios gives insights towards a successful deployment of energy efficient cellular networks.

가정용 연료전지 시스템의 전기 효율 향상을 위한 연료/공기 이용률 운전 최적화 (Operational Optimization of Anodic/cathodic Utilization for a Residential Power Generation System to Improve System Power Efficiency)

  • 석동훈;김민진;손영준;이진호
    • 한국수소및신에너지학회논문집
    • /
    • 제24권5호
    • /
    • pp.373-385
    • /
    • 2013
  • To obtain higher power efficiency of Residential Power Generation system(RPG), it is needed to operate system on optimized stoichiometric ratios of fuel and air. Stoichiometric ratios of fuel/air are closely related to efficiency of stack, reformer and power consumption of Balance Of Plant(BOP). In this paper, optimizing stoichiometric ratios of fuel/air are conducted through systematic experiments and modeling. Based on fundamental principles and experimental data, constraints are chosen. By implementing these optimum values of stoichiometric ratios, power efficiency of the system could be maximized.

RIS Selection and Energy Efficiency Optimization for Irregular Distributed RIS-assisted Communication Systems

  • Xu Fangmin;Fu Jinzhao;Cao HaiYan;Hu ZhiRui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권7호
    • /
    • pp.1823-1840
    • /
    • 2023
  • In order to improve spectral efficiency and reduce power consumption for reconfigurable intelligent surface (RIS) assisted wireless communication systems, a joint design considering irregular RIS topology, RIS on-off switch, power allocation and phase adjustment is investigated in this paper. Firstly, a multi-dimensional variable joint optimization problem is established under multiple constraints, such as the minimum data requirement and power constraints, with the goal of maximizing the system energy efficiency. However, the proposed optimization problem is hard to be resolved due to its property of nonlinear nonconvex integer programming. Then, to tackle this issue, the problem is decomposed into four sub-problems: topology design, phase shift adjustment, power allocation and switch selection. In terms of topology design, Tabu search algorithm is introduced to select the components that play the main role. For RIS switch selection, greedy algorithm is used to turn off the RISs that play the secondary role. Finally, an iterative optimization algorithm with high data-rate and low power consumption is proposed. The simulation results show that the performance of the irregular RIS aided system with topology design and RIS selection is better than that of the fixed topology and the fix number of RISs. In addition, the proposed joint optimization algorithm can effectively improve the data rate and energy efficiency by changing the propagation environment.

건조효율 향상을 위한 고추건조공정의 최적화 (Process Optimization of Red Pepper Drying for the Improvement of Drying Efficiency)

  • 정순경;금동혁;이동선
    • 한국식품과학회지
    • /
    • 제24권5호
    • /
    • pp.428-439
    • /
    • 1992
  • 고추건조에 대한 에너지사용의 효율성을 표현할 수 있는 건조효율 지표를 유도하고 정의하였으며 건조효율에 미치는 공정변수의 영향을 분석하고 carotenoids 보존의 제한조건하에서 건조효율을 최대화시키는 최적건조조건을 찾았다. 전체 사용에너지에 대한 증발에너지의 비로 단순화시켜서 열풍의 건구 및 습구온도의 함수로 표현된 건조효율이 건조공정중 실제의 에너지 사용의 효율성을 표현할 수 있는 것으로 확인되었고, 이를 이용하여 주어진 조건에서의 최적화가 가능하였다. 최적화 결과 1단계 건조에 비해서 2단계 건조가 같은 품질제한 조건하에서 건조효율을 증가시킬 수 있었다. 한편 배기공기 온도를 포함하는 간단한 변환변수와 건조되는 고추의 수분함량 사이의 관계에 의하여 건조시간 종료를 제어할 수 있는 가능성도 검토되었다. 전체적으로 본 연구에서 고추 건조시 좋은 품질을 유지하면서 건조효율을 향상시키고 에너지소비를 절감할 수 있는 건조기 운전의 방향을 제시하였다.

  • PDF