• 제목/요약/키워드: Energy efficiency management

검색결과 874건 처리시간 0.156초

다양한 형태의 멀티미디어 데이터를 위한 통신 프로세서의 효율적 관리 방법에 대한 연구 (Adaptive Online Processor Management Algorithms for QoS sensitive Multimedia Data Communication)

  • 김승욱;김성천
    • 한국통신학회논문지
    • /
    • 제32권1B호
    • /
    • pp.17-21
    • /
    • 2007
  • 본 논문에서는 멀티미디어 네트워크상에서 우선순위가 높은 서비스의 QoS를 보장하며 동시에 프로세서의 에너지 효율을 최대화하는 적응적 온라인 프로세서 관리기법을 제안하였다. 이 기법은 현재 네트워크의 트래픽 상황을 기반으로 하여 실시간으로 프로세서를 관리한다. 제안된 방법의 가장 큰 특징은 상호 상충하는 다양한 성능 메트릭들 사이에 적정한 균형을 이루어 안정적으로 시스템을 운영하는데 있다. 컴퓨터 시뮬레이션을 통하여 기존에 제안된 프로세서 관리기법에 비해 본 논문에서 제안된 방법이 다양한 트래픽 상황에서 우수한 성능을 가지는 것을 확인할 수 있었다.

다중권선 변압기를 이용한 능동형 셀 밸런싱 회로에서 밸런싱 전류 전달 효율을 높이기 위한 변압기 설계 방안 (Transformer Design Methodology to Improve Transfer Efficiency of Balancing Current in Active Cell Balancing Circuit using Multi-Winding Transformer)

  • 이상중;김명호;백주원;정지훈
    • 전력전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.247-255
    • /
    • 2018
  • This paper proposes a transformer design of a direct cell-to-cell active cell balancing circuit with a multi-winding transformer for battery management system (BMS) applications. The coupling coefficient of the multi-winding transformer and the output capacitance of MOSFETs significantly affect the balancing current transfer efficiency of the cell balancing operation. During the operation, the multi-winding transformer stores the energy charged in a specific source cell and subsequently transfers this energy to the target cell. However, the leakage inductance of the multi-winding transformer and the output capacitance of the MOSFET induce an abnormal energy transfer to the non-target cells, thereby degrading the transfer efficiency of the balancing current in each cell balancing operation. The impacts of the balancing current transfer efficiency deterioration are analyzed and a transformer design methodology that considers the coupling coefficient is proposed to enhance the transfer efficiency of the balancing current. The efficiency improvements resulting from the selection of an appropriate coupling coefficient are verified by conducting a simulation and experiment with a 1 W prototype cell balancing circuit.

펌프의 효율측정 장비에 관한 연구 (Study on the Device for Pump Efficiency Measurement)

  • 배철오
    • 선박안전
    • /
    • 통권33호
    • /
    • pp.53-62
    • /
    • 2012
  • 펌프는 산업 및 건설현장에 급수, 냉난방 및 산업공정에서 다양하게 사용되고 있으며, 전체 국가 전력의 약 20%를 소비하고 있다. 하지만 에너지 낭비요소에 대한 관리는 거의 이루어지지 않고 있는 실정이다. 따라서 만일 효율이 저하된 상태로 펌프가 운전된다면 그의 에너지 낭비는 대단히 크게 된다. 펌프의 경우 초기 구입비용에 비해 사용하면서 발생하는 전력비용이 대단히 크기 때문에 이러한 낭비를 줄이기 위해서는 펌프의 효율을 정기적으로 측정하여 펌프의 운전 상태를 진단함으로써 펌프의 최적운전상태 및 교환주기 등을 제시할 수 있을 것이다. 본 연구에서는 펌프의 효율측정을 위해 열역학적 방법과 수력학적 방법(전통적인 방법)의 두 가지 방법으로 측정할 수 있는 장비에 대해서 소개하고 실제 펌프의 효율을 계산하여 그 유효성을 확인하였다.

  • PDF

Multi-Objective Optimal Predictive Energy Management Control of Grid-Connected Residential Wind-PV-FC-Battery Powered Charging Station for Plug-in Electric Vehicle

  • El-naggar, Mohammed Fathy;Elgammal, Adel Abdelaziz Abdelghany
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.742-751
    • /
    • 2018
  • Electric vehicles (EV) are emerging as the future transportation vehicle reflecting their potential safe environmental advantages. Vehicle to Grid (V2G) system describes the hybrid system in which the EV can communicate with the utility grid and the energy flows with insignificant effect between the utility grid and the EV. The paper presents an optimal power control and energy management strategy for Plug-In Electric Vehicle (PEV) charging stations using Wind-PV-FC-Battery renewable energy sources. The energy management optimization is structured and solved using Multi-Objective Particle Swarm Optimization (MOPSO) to determine and distribute at each time step the charging power among all accessible vehicles. The Model-Based Predictive (MPC) control strategy is used to plan PEV charging energy to increase the utilization of the wind, the FC and solar energy, decrease power taken from the power grid, and fulfil the charging power requirement of all vehicles. Desired features for EV battery chargers such as the near unity power factor with negligible harmonics for the ac source, well-regulated charging current for the battery, maximum output power, high efficiency, and high reliability are fully confirmed by the proposed solution.

Sales Energy Promotion Efficiency and Policy Utilization Plan for Energy Facilities

  • KWON, Lee-Seung;LEE, Woo-Sik;KWON, Woo-Taeg
    • 유통과학연구
    • /
    • 제18권9호
    • /
    • pp.67-75
    • /
    • 2020
  • Purpose: The purpose of this study is to enhance sales promotion efficiency for using solid refuse fuel facilities. Renewable energy technology using Solid Refuse Fuel (SRF) is an economic efficiency technology that recovers waste by burning various wastes. A survey on the pollutants discharged from the solid fuels facilities was investigated so that the SRF facilities could be expanded, distributed and reflected in the policy. Research design, data, and methodology: In this study, 9 business sites using SRF and Bio-SRF as main raw materials were investigated for 2 years. The characteristics of target business sites such as the type of fuel used, combustion method, combustion temperature, daily fuel consumption and environmental prevention facilities were studied. Results: The average pollution & ammonia concentration of Bio-SRF facilities was found to be 88.15% higher than that of SRF facilities. But the average acetaldehyde concentration of SRF facilities was found to be 88.15% higher than that of Bio-SRF facilities. Conclusions: The main issue is how much electric power generation using combustible materials affects air pollution. The waste recycling law provides the standard value according to the fuel property, but there is a considerable gap with the mixed fuel. Therefore, for efficient utilization of facilities using solid fuel products, additional research is needed to improve the distribution structure of exhaust pollutants is needed.

Energy efficiency strategy for a general real-time wireless sensor platform

  • Chen, ZhiCong
    • Smart Structures and Systems
    • /
    • 제14권4호
    • /
    • pp.617-641
    • /
    • 2014
  • The energy constraint is still a common issue for the practical application of wireless sensors, since they are usually powered by batteries which limit their lifetime. In this paper, a practical compound energy efficiency strategy is proposed and realized in the implementation of a real time wireless sensor platform. The platform is intended for wireless structural monitoring applications and consists of three parts, wireless sensing unit, base station and data acquisition and configuration software running in a computer within the Matlab environment. The high energy efficiency of the wireless sensor platform is achieved by a proposed adaptive radio transmission power control algorithm, and some straightforward methods, including adopting low power ICs and high efficient power management circuits, low duty cycle radio polling and switching off radio between two adjacent data packets' transmission. The adaptive transmission power control algorithm is based on the statistical average of the path loss estimations using a moving average filter. The algorithm is implemented in the wireless node and relies on the received signal strength feedback piggybacked in the ACK packet from the base station node to estimate the path loss. Therefore, it does not need any control packet overheads. Several experiments are carried out to investigate the link quality of radio channels, validate and evaluate the proposed adaptive transmission power control algorithm, including static and dynamic experiments.

An Energy- Efficient Optimal multi-dimensional location, Key and Trust Management Based Secure Routing Protocol for Wireless Sensor Network

  • Mercy, S.Sudha;Mathana, J.M.;Jasmine, J.S.Leena
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3834-3857
    • /
    • 2021
  • The design of cluster-based routing protocols is necessary for Wireless Sensor Networks (WSN). But, due to the lack of features, the traditional methods face issues, especially on unbalanced energy consumption of routing protocol. This work focuses on enhancing the security and energy efficiency of the system by proposing Energy Efficient Based Secure Routing Protocol (EESRP) which integrates trust management, optimization algorithm and key management. Initially, the locations of the deployed nodes are calculated along with their trust values. Here, packet transfer is maintained securely by compiling a Digital Signature Algorithm (DSA) and Elliptic Curve Cryptography (ECC) approach. Finally, trust, key, location and energy parameters are incorporated in Particle Swarm Optimization (PSO) and meta-heuristic based Harmony Search (HS) method to find the secure shortest path. Our results show that the energy consumption of the proposed approach is 1.06mJ during the transmission mode, and 8.69 mJ during the receive mode which is lower than the existing approaches. The average throughput and the average PDR for the attacks are also high with 72 and 62.5 respectively. The significance of the research is its ability to improve the performance metrics of existing work by combining the advantages of different approaches. After simulating the model, the results have been validated with conventional methods with respect to the number of live nodes, energy efficiency, network lifetime, packet loss rate, scalability, and energy consumption of routing protocol.

압전형 에너지 수확장치를 위한 통합 해석환경의 적용 및 검증 (Application and Verification of Fully-Integrated Design Environment for Piezoelectric Energy Harvester)

  • ;;한승오
    • 센서학회지
    • /
    • 제22권5호
    • /
    • pp.364-368
    • /
    • 2013
  • Vibrational energy harvester based on piezoelectricity has been expected to be the dominant energy harvesting technology due to the advantages of high conversion efficiency, light weight and small size, night operation, etc. Its commercialization is just around the corner but the integration with power management electronics should be solved in advance. In this paper, therefore, fully-integrated design environment for piezoelectric energy harvesting systems is presented to assist co-design with the power management electronics. The proposed design environment is capable of analyzing the energy harvester including the package-induced damping effects and simulating the device and its power management electronics simultaneously. When the developed design environment was applied to the fabricated device, the simulated resonant frequency matched well with the experimental result with a difference of 2.97% only. Also, the complex transient response was completed in short simulation time of 3,001 seconds including the displacement distribution over the device geometry. Furthermore, a full-bridge power management circuit was modeled and simulated with the energy harvester simultaneously. Therefore the proposed, fully-integrated design environment is accurate and fast enough for the contribution on successful commercialization of piezoelectric energy harvester.

신재생에너지 연계형 에너지관리장치의 운영 사례 연구 (A Case Study on Operation of Energy Management System Connected with Renewable Energy)

  • 조재영;나인호
    • 스마트미디어저널
    • /
    • 제7권2호
    • /
    • pp.71-77
    • /
    • 2018
  • 본 논문에서는 신재생에너지 발전과 연계한 에너지저장시스템(ESS)의 최적 운영을 위한 에너지관리시스템(EMS)의 구성요소 설계 시 고려할 기능, 운영 효과 분석과 전력요금 절감 방안을 제안한다. 이를 위해 태양광 발전 시스템에 리튬이온전지 기반의 배터리 시스템과 에너지관리시스템 연계 및 구축방안을 제시하고, 1년 동안 운영 데이터에 대한 분석한 결과를 기술한다. 또한 시스템 운영 효과를 높이기 위한 방안으로 EMS를 이용하여 최대수요 발생시간대의 피크전력을 경부하 시간대 충전전력으로 대체하여 ESS 전용 요금제에 따른 요금편익과 부하 평준화에 기여하는 효과를 제안한다.

PEMFC 시스템 효율 향상을 위한 열 관리 설비 개발 및 연구 (Development and Research of Thermal Management Equipment for Efficiency Enhancement of PEMFC Systems)

  • 김재환;이지승;강인석;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제35권2호
    • /
    • pp.205-215
    • /
    • 2024
  • This study introduced a direct contact heat exchanger to enhance the efficiency of polymer electrolyte membrane fuel cells (PEMFCs) systems. According to previous research, 28% of the operating costs of fuel cell systems are attributed to heat exchanger devices, prompting the design of a direct contact heat exchanger to address this issue. Optimal configurations were determined through computational fluid dynamics analysis and experimental device fabrication, and the enhanced heat exchange performance of the heat exchanger was experimentally confirmed. Through this, the contribution of the direct contact heat exchanger to the heat management and efficiency enhancement of PEMFC systems was established.