• Title/Summary/Keyword: Energy efficiency evaluation

Search Result 864, Processing Time 0.052 seconds

Estimation of Rebate Level for Energy Efficiency Programs Using Optimization Technique (최적화 기법을 이용한 에너지 효율 프로그램의 지원금 수준 산정)

  • Park, Jong-Jin;So, Chol-Ho;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.369-374
    • /
    • 2008
  • This paper presents the evaluation procedures and the estimation method for the estimation of optimal rebate level for EE(Energy Efficiency) programs. The penetration amount of each appliance is estimated by applying price function to preferred diffusion model resulted from model compatibility test. To estimate the optimal rebate level, two objective functions which express the maximum energy saving and operation benefit are introduced and by multi-objective function which can simultaneously consider two objective functions the optimal rebate level of each appliance is estimated. And then, using the decided rebate level and each penetration amount, the priority order for reasonable investment of each high-efficiency appliance is estimated compared to the results of conventional method. Finally, using a benefit/cost analysis based on California standard practice manual, the economic analysis is implemented for the four perspectives such as participant, ratepayer impact measure, program administrator cost and total resource cost.

Outcome Analysis on Renewable Energy Dissemination Program through Correlation Analysis and Effectiveness Indicator (상관관계분석, 설비투입액 비교 및 효율성 지표를 통한 신재생에너지보급사업의 정량적 성과분석 고찰)

  • Lee, Dong-Geon;Moon, Chang-Kwon;Heo, Eunn-Yeong
    • New & Renewable Energy
    • /
    • v.6 no.2
    • /
    • pp.33-39
    • /
    • 2010
  • The objective of this study is to present a basis for the evaluation on the renewable energy dissemination program in Korea applying the outcome evaluation, one of the five types of evaluation methods of EERE, DOE, and the effectiveness indicator, which is suggested by IEA, OECD. The outcome evaluation quantifies achievements of program outputs and outcomes against planned time frame. We analyze the correlation coefficients between cumulative expenditure on the renewable energy dissemination program and each renewable energy deployment and the unit installation cost of several dissemination programs for the outcome evaluation. Meanwhile, the effectiveness indicator is calculated by dividing the additional renewable energy deployment achieved in a given year by the remaining mid-term realizable potential to 2020 in each source of renewable energy. The results show that correlation coefficients between cumulative expenditure and each renewable energy deployment are significantly positive during the implementation period of each deployment program. And photovoltaic energy, bio energy, and wind power energy show high effectiveness indicator.

Performance Evaluation for Hydraulic Type Energy Regenerative System (유압식 에너지 회생시스템의 성능평가)

  • Jung, Dong-Soo;Kim, Hyong-Eui;Kang, E-Sok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.136-144
    • /
    • 2006
  • Vehicles usually have 3 types of speed pattern like acceleration, travel, and deceleration. It requires much driving energy from engine while accelerating, preserves much kinetic energy by inertia moment at travel speed, and releases the kinetic energy to the air while decelerating by the break system. If we accumulate the kinetic energy while decelerating and reuse the energy at the accelerating stage, then it can elevate the fuel efficiency, reduce the emission and improve the motive power. This paper proposes a hydraulic type energy regenerative system which converts the kinetic energy into hydraulic energy at the stage of deceleration and reuses it at the starting and accelerating stage of vehicles. The test equipment which has the field condition of city bus was prepared to evaluate the performance for energy regeneration. The test results show that both energy regeneration efficiency and fuel efficiency are improved significantly and the emission is reduced notably.

The Basic Study on Economic Evaluation of Distributed Energy System Installed in Hospital (병원건물 분산에너지시스템 도입에 따른 경제성분석)

  • Hong, Won-Pyo;Kim, Hyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1136_1138
    • /
    • 2009
  • This paper gives a basic Energy performance data of micro gas turbine and Renewable Energy(BIPV and Solar Collector System) installed in Hospital Building. The efficiency of solar collector and BIPV system was 30%, 10% individually, and lower than micro gas turbines. Micro gas turbines are small gas turbines that burn gaseous and liquid fuels to produce a high-energy exhaust gas and to generate the electrical power. Recently the size range for micro gas turbines is form 30 to 500kW and power-only generation or in combined heat and power(CHP) systems. If micro gas turbine was operated only for electric energy, the efficiency was about 30%, but for combined heat and power, the efficiency was about 90%. Finally, installed in large hospital, Micro gas turbine system was operated to CHP mode, was high-efficiency system than Solar collector and BIPV system.

  • PDF

The Basic Study on Economic Evaluation of Micro-turbine and Alternative Energy system Installed in Hospital (병원건물의 마이크로터빈과 신재생에너지도입에 따른 경제성평가 기초연구)

  • Kim, Byoung-Soo;Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.439-444
    • /
    • 2009
  • This paper gives a basic Energy performance data of micro gas turbine and Renewable Energy(BIPV and Solar Collector System) installed in Hospital Building. The efficiency of. solar collector and BIPV system was 30%, 10% individually, and lower than micro gas turbines. Micro gas turbines are small gas turbines that bum gaseous and liquid fuels to produce a high-energy exhaust gas and to generate the electrical power. Recently the size range for micro gas turbines is form 30 to 500kW and power-only generation or in combined heat and power(CHP) systems. If micro gas turbine was operated only for electric energy, the efficiency was about 30%, but for combined heat and power, the efficiency was about 90%. Finally, installed in large hospital, Micro gas turbine system was operated to CHP mode, was high-efficiency system than Solar collector and BIPV system.

  • PDF

Contributions of Large-Industrial Enterprise to Demand-Side Management and Economic Analysis on Diffusion of Energy Efficiency Measures (산업체 전력다소비 설비의 수요관리 기여도 및 효율향상 보급에 대한 경제성 평가분석)

  • Kim, Seong-Cheol;Park, Jong-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.18-26
    • /
    • 2012
  • Though electricity consumption amount in industry has been increased gradually, corresponding power supply show symptoms of marginal point. Importance of demand-side management from large-industries has also been raised. This paper deals with induction motor, which is one of representative examples of heavy electricity consumption utilities, to analyze potential technical capability, economic feasibility from consumers' viewpoint and demand-side management feasibility from nation-wide perspective. Nation-wide economic feasibility analysis was done through California test, which has been used as demand-side management evaluation model. This paper also describes limitation of existing high efficiency induction motor in terms of contribution to demand-side management and utilizes premium motor to calculate demand-side management contribution level and economic feasibility evaluation. Likewise, this paper emphasizes the efficiency improvement of induction motor and analyzes how much premium motor related technologies can contribute to demand-side management.

Case study on Economic development impacts of Community wind projects usin Impact evaluation (Impact evaluation을 이용한 미국 주택용 풍력보급 정책 평가 사례분석 및 시사점)

  • Moon, Chang-Kwon;Kim, Yeon-Bae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.299-299
    • /
    • 2009
  • Impact evaluation은 현재 시행중이거나 과거에 시행된 프로그램이 국가나 평가대상에 미치는 영향을 정량적으로 측정하는 평가 방법으로 경제적 상황이나 시장 트렌드와 같이 결과에 영향을 미칠 수 있는 외부효과를 제거하고 순수하게 프로그램만의 영향력을 산출한다. 이 방법은 원래 미국의 DOE(Department Of Energy)산하 EERE(Energy Efficiency and Renewable Energy)에서 프로그램 평가를 위해 사용하는 General Program Evaluation Guide에서 언급된 5가지 평가방법 중 하나로 미국의 신재생에너지 프로그램 평가에 주로 사용된다. 이를 한국에 적용하기 위해 미국의 주택용 풍력보급 사업을 평가한 보고서인 Economic Development Impacts of Community wind Projects: A Review and Empirical Evaluation 을 분석 했다. 이 보고서에서는 I/O model을 이용해 직접적 영향력, 간접적 영향력, 유도된 영향력을 구했으며 이를 기존의 평가 보고서와 비교해서 시사점을 도출하였다.

  • PDF

Performance Evaluation of Fixed-concentrated Photovoltaic/Thermal Hybrid Panel using Reflector (반사판을 이용한 고정식 집속형 태양광.열복합패널의 성능평가)

  • Seo, Yu-Jin;Huh, Chang-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.85-92
    • /
    • 2005
  • One of the most effective methods for utilizing solar energy is to combine thermal solar and optical energy simultaneously using a hybrid panel. Many systems using various kinds of photovoltaic panels have already been constructed. But utilizing solar energy by means of a hybrid panel with concentrator has not been to be attempted yet. Normally if sunlight is directed on the solar cell, and there is no increase in temperature, the absorption energy of each cell will increase per unit area. In a silicon solar cell. however, cell conversion efficiency decreases according to the increasing temperature. Therefore, to maintain cell conversion efficiency under normal condition, it is necessary to keep the cell at operating temperature. we design and make new hybrid panel with cooling system to prevent increasing of temperature on cell, collect effectively thermal energy. We compared performance of new hybrid panel with PV module and thermal panel. We also evaluated conversion efficiency, electric power and thermal capacity and confirmed cooling effect from thermal absorption efficiency.

Energy Performance Evaluation of Apartment Houses According to Window Energy Consumption Efficiency Rating System in Korea (창호 에너지소비효율등급제에 따른 공동주택의 열성능 평가)

  • Lim, Hee Won;Kim, Dong Yun;Lee, Soo Man;An, Jung Hyuk;Yoon, Jong Ho;Shin, U Cheul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.4
    • /
    • pp.159-166
    • /
    • 2018
  • The Korean fenestration energy consumption efficiency rating system only considers thermal performance of the heat transfer coefficient (U-value) and airtightness excluding optical characteristics of the solar heat gain coefficient (SHGC). This study analyzed annual heating and cooling energy requirements on the middle floor of apartment by optical and thermal performance of windows to evaluate the suitability of the rating system. One hundred and twenty-eight windows were analyzed using THERM and WINDOW 7.4, and energy simulation for a reference model of an apartment house facing south was performed using TRNSYS 17. The results showed that window performance was the main factor in the heating and cooling load. The heating load of the reference model was 539 kWh to 2,022 kW, and the cooling load was 376 kWh to 1,443 kWh. The coefficient of determination ($R^2$) of the heating and cooling loads driven from the SHGC were 0.7437 and 0.9869, which are more compatible than those from the U-value, 0.0558 and 0.4781. Therefore, it is not reasonable to evaluate the energy performance of windows using only the U-value, and the Korean fenestration energy consumption efficiency rating system requires a new evaluation standard, including SHGC.

An Overview on Standards for Seasonal Performance Evaluation of Multi-type Air Conditioners (멀티형 에어컨의 기간에너지소비효율 평가규격에 관한 연구)

  • 박윤철;문제명;홍주태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.91-100
    • /
    • 2004
  • Energy efficiency evaluation method for a multi-type air conditioning system still has not been developed. In this study, analysis on capacity range and evaluating method of standards for air conditioners was conducted with world-wide Standards. It is not a proper approach to use the standards for residential air conditioner to multi type air conditioners. Some difficulties and problems are commented in this study with overview of the standards. Through the analytic research, an evaluating method for multi type air conditioner was suggested with Integrated Part Load Value (IPLV). The suggested concept for evaluating energy efficiency during part load condition considers building load pattern and operating hours of the system at different locations. Load was weighted in IPLV to consider not only the concept of occurrence of outdoor temperature such as bin method but also operation hours of the system. An experiment about the IPLV was conducted with variable air volume ducted type air conditioning system and multi-type system through modified code tester to give a glance at quantitative value of the IPLV.