• Title/Summary/Keyword: Energy dispersive X-ray spectroscopy(EDX)

Search Result 146, Processing Time 0.03 seconds

Effects of the Enamel Erosion Caused by Certain Antipyretic and Analgesic Medicines for Children (일부 어린이 해열·진통제의 유치 법랑질 부식효과)

  • Cheun, Su-Kyung;Jeong, Moon-Jin;Ahn, Yong-Soon;Lee, Ye-Jin;Ko, Mi-Kyung;Jeong, Soon-Jeong;Lim, Do-Seon
    • Journal of dental hygiene science
    • /
    • v.16 no.3
    • /
    • pp.235-241
    • /
    • 2016
  • This study was conducted to provide basic understanding regarding possible enamel erosion by three kinds of fist-aid antipyretic and analgesic medicines over a period of time, with comparison and analysis of the resulting deciduous teeth surface and microhardness changes. The analysis was performed using energy dispersive X-ray spectroscopy (EDX) and scanning electron microscope (SEM) to examine the surface erosion and changes. The Kruskal-Wallis test show differences in surface erosion and changes after 3, 5 and 8 days of treatment as well as before and after the treatment in each group. According to the results, there was no significant difference in the early deciduous teeth enamel surface microhardness (p>0.01). However there were signigicant changes after 3, 5, and 8 days (p<0.01). Calcim (Ca) and phosphorous (P) analysis using EDX showed significant differences in the enamel characteristics according to each tissue area after 8 days (p<0.05), but there was no significant difference in any of the areas for P content (p>0.05). In the surface observation with the SEM treatment with Children's Tylenol$^{(R)}$ tablet, which has the lowest pH, looked the roughest, followed by Brufen syrup for children and Children's Tylenol$^{(R)}$ suspension. Based on these results, it should be considered that antipyretic and analgesic medicines for children, which have lower pH values, may cause tooth erosion. Hence, it is necessary to give special attention to oral hygiene in young children or infants by brushing their teeth after such drugs are administered.

Electrochemical Characteristics of Dental Implant in the Various Simulated Body Fluid and Artificial Saliva (다양한 유사체액과 인공타액에서 치과용 임플란트의 전기화학적 특성)

  • Kim, T.H.;Park, G.H.;Son, M.K.;Kim, W.G.;Jang, S.H.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.226-231
    • /
    • 2008
  • Titanium and its alloy have been widely used in dental implant and orthopedic prostheses. Electrochemical characteristics of dental implant in the various simulated body fluids have been researched by using electrochemical methods. Ti-6Al-4V alloy implant was used for corrosion test in 0.9% NaCl, artificial saliva and simulated body fluids. The surface morphology was observed using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The electrochemical stability was investigated using potentiosat (EG&G Co, 263A). The corrosion surface was observed using scanning electron microscopy (SEM). From the results of potentiodynamic test in various solution, the current density of implant tested in SBF and AS solution was lower than that of implant tested in 0.9% NaCl solution. From the results of passive film stability test, the variation of current density at constant 250 mV showed the consistent with time in the case of implant tested in SBF and AS solution, whereas, the current density at constant 250mV in the case of implant tested in 0.9% NaCl solution showed higher compared to SBF and AS solution as time increased. From the results of cyclic potentiodynamic test, the pitting potential and |$E_{pit}\;-\;E_{corr}$| of implant tested in SBF and AS solution were higher than those of implant tested in 0.9% NaCl solution.

Effect of glass-infiltration treatments on the shear bond strength between zirconia and ultra low-fusing porcelain veneer (글라스 용융침투 처리가 지르코니아와 초저온 소성 도재와의 전단결합강도에 미치는 영향)

  • Yim, Eun-Kyung;Park, Sang-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.4
    • /
    • pp.269-277
    • /
    • 2018
  • Purpose: This study examined the effects of glass infiltration treatments on the shear bond strength (SBS) between zirconia core and ultra low-fusing porcelain veneer. Materials and methods: The zirconia specimens were classified into 4 groups (n = 12): Untreated zirconia (group Z), zirconia coated ZirLiner (group ZL), glass-infiltrated zirconia (group ZG), glass-infiltrated and sandblasted zirconia (group ZGS). A cylinder of ultra low-fusing veneer porcelain was build up on each disk ($6mm{\times}3mm$). SBS was measured using a universal testing machine. Scanning electron microscope and Energy Dispersive X-ray spectroscopy were used to evaluate the surface of zirconia and failure pattern after SBS. Results: SBS value of group ZGS was significantly lower than that of other groups (P < .05). No significant differences were detected among group ZL, group Z and group ZG. Conclusion: Glass infiltration is not effective to the bond strength between zirconia and ultra low-fusing porcelain veneer. Sandblasting also dramatically decreased the bonding strength.

Stabilization of Pb Contaminated Army Firing Range Soil using Calcined Waste Oyster Shells (소성가공 굴껍질을 이용한 군부대 사격장내 고농도 납 오염토양의 안정화)

  • Moon, Deok-Hyun;Cheong, Kyung-Hoon;Kim, Tae-Sung;Khim, Jee-Hyeong;Choi, Su-Bin;Ok, Yong-Sik;Moon, Ok-Ran
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.185-192
    • /
    • 2010
  • The objective of this study was to investigate the effectiveness of stabilization for army firing range soil highly contaminated with Pb (total Pb: 29,000 mg/kg) using calcined waste oyster shells. The calcination was conducted to activate quicklime from calcite. In order to evaluate the effectiveness of calcination, both natural oyster shells (NOS) and calcined oyster shells (COS) were applied to the Pb contaminated soil. Stabilization was conducted by mixing the contaminated soil with oyster shell media at 5-20 wt% and cured for 28 days. Following 28 days of curing, Pb leachability was measured based on the Korean Standard Test method (0.1 N HCl extraction). The treatment results showed that the COS treatment outperformed the NOS treatment. All of the NOS treatments failed to meet the Korean warning standard of 100 mg/kg. However, the Pb concentrations were significantly reduced to 47 mg/kg and 3 mg/kg upon 15 wt% and 20 wt% COS treatments, respectively which passed the Korean warning standard. Moreover, -#20 mesh materials were more effective than the -#10 mesh materials in effectively reducing Pb leachability. The scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX) results indicated that Pb immobilization was strongly linked to Al and Si.

THE MORPHOLOGICAL OBSERVATION OF HUMAN GINGIVAL FIBROBLASTS ATTACHMENT AND SPREADING ON THE MECHANICAL TREATED TITANIUM PLASMA SPRAYED IMPLANT SURFACE (기계적 표면 처리된 TITANIUM PLASMA SPRAYED IMPLANT에 대한 치은섬유아세포전개양상의 형태학적 관찰)

  • Whang, Yun-Hi;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.3
    • /
    • pp.741-755
    • /
    • 1995
  • Currently titanium is the material of choice for implants because of its biological acceptance. This high degree of biocompatibility is thought to result, in part, from the protective and stable oxide layer that presumably aids in the bonding of the extracellular matrix at the implant-tissue interface. Endosseous dental implants are interfaced with bone, connective tissue, and epithelium when implanted into the jaw bone. The soft tissue interface including connective tissue and epithelium is one of the most critical factors in the determination of implant maintenance and prognosis. For maintenance of failing or failed implants, it is essential to treat the implant fixture surface to remove bacterial endotoxins and make a surface tolerated by surrounding soft and hard tissues. In this study, the effect of mechanical treatment on titanium plasma sprayed implant on adhesiveness and proliferation of human gingival fibroblasts and changed surface characteristics were studied. titanium plasma sprayed discs manufactured by Friedrichsfeld company were treated with loaw speed stone bur, a rubber point and a jetpolisher. Its surface components were analyzed with Energy dispersive X-ray spectroscopy to evaluate whether the surface characteristics were altered or not. To observe the spreading pattern of the human gingival fibroblasts which attached to the all specimens author used the scanning electron microscope. The results were as follows : Pure titanium and plasma sprayed titanium, stone polished titanium showed titanium peak and small amout of aluminum, so there was no alteration on surface characteristics. Under the scanning electron microscopic examination in the initial attachment of human gingival fibroblast, there was a slight enhancement in pure titanium, stone polished titanium than plasma sprayed titanium. After 6 hours, the pure titanium and stone polished titanium showed human gingival fibroblasts were elongated and connected with numerous processes. Human gingival fibroblasts were more intimately attached on the pure titanium discs than on the other discs. The human gingival fibroblasts attached on the plasma sprayed titanium by thin and elongated processes. After 24 hours, the human gingival fibroblasts connected with each other via numerous processes and compeletly covered the pure titanium and stone polshed titanium discs. Human gingival fibroblasts had multiple point contacts with more long and thin lamellopodia and showed a little bare surface on plasma sprayed titanium discs.

  • PDF

ULTRA-STRUCTURE AND ACID ETCHING CHARACTERISTICS OF OCCLUSAL FISSURE ENAMEL (교합면 열구 법랑질의 미세구조 및 산부식 형태)

  • Cho, Tae-Sik;Yoon, Jeong-Hoon;Kim, Su-Gwan;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.2
    • /
    • pp.321-331
    • /
    • 2005
  • The purpose of this study was to compare the effectiveness of mechanical and acid treatment on enamel surfaces for the retention of pit and fissure sealants and evaluate the presence of a prismless layer. The etch pattern produced on enamel from immature and mature premolar teeth extracted with varying period of acid etching using 37% phosphoric acid was examined using a scanning electron microscope(SEM). The composition of each groups was evaluated using an energy dispersive x-ray(EDX) spectroscopy. The result of present study can be summarized as follows: 1. Prismless layer was commonly observed on the fissure enamel in young and mature premolar. 2. There were no differences in micro-structure and etching pattern on fissure enamel between the young and the mature premolar. 3. The most effective etching pattern for retention of pit and fissure sealant was observed in 60 seconds of etching time and no apparent difference of etching pattern was found among 15, 30, and 45 seconds of etching time which showed non-retentive etching patterns. 4. The etching pattern obtained by grinding enamel surface with bur followed by 60 seconds of etching was similar to that of 60 seconds of etching without any pretreatment of fissure surface. 5. Type 2 etching pattern was commonly found on fissure enamel in both young and mature premolar. 6. The calcium content and P/Ca ratio in fissure enamel between the young and the mature premolar were significantly different(P<0.05). But content of calcium, phosphate and P/Ca ratio on various regions of fissure enamel in both young and mature premolar did not showed any difference. Based on these results, prismless layer may negatively influence the retention of pit and fissure sealants. Therefore, the mechanical removal of the prismless layer by grinding prior to etching or by prolonged etching time of enamel within the fissure system should result in an improved bonding of a pit and fissure sealant.

  • PDF