• Title/Summary/Keyword: Energy demand-supply

Search Result 522, Processing Time 0.05 seconds

A Study on the Change and Improvement of Smart Grid Policy after the Great East Japan Earthquake (동일본대지진 이후 일본 스마트그리드 정책의 변천과 개선방안 연구)

  • Lee, Jum-Soon
    • Journal of Digital Convergence
    • /
    • v.15 no.7
    • /
    • pp.41-53
    • /
    • 2017
  • This study focuses on the current state of Smart Grid policy in Japan and its problems while the interest in Smart Grid has been increasing since the March 2011 earthquake in East Japan. As a result of the analysis, Japan introduced the fixed price buying system of new and renewable energy in response to the power supply and demand problem caused by the 2011 earthquake in East Japan, and established a decentralized green electricity trading market in which electricity generated from new and renewable energy is traded Smart Grid-related projects were implemented as a solution to solve energy crisis and environmental problems at the same time. As a result, we achieved visible results such as suppressing peak power, reducing CO2 emissions, and securing stable supply and demand of energy using renewable energy sources. On the other hand, the improvement of current Smart Grid policy operation in Japan and the introduction of stabilization system of power system, promotion of international standards of domestic technology related to smart grid, and support for strengthening security of smart grid.

Demand Side Management Technologies Based On Energy Environment (에너지환경을 고려한 수요관리기술)

  • 윤갑구
    • Journal of the Korean Professional Engineers Association
    • /
    • v.27 no.4
    • /
    • pp.46-55
    • /
    • 1994
  • Demand Side Management(DSM) is a system to reduce the investment cost for new power plant construction and expansion of supply facilities, power through the investment for the energy conservation and load management. In this study, the trend of the energy environment, the necessity and feasibility of DSM shall be investigated and analysed, so that this study will give a help to select and develope a proper DSM technologies for actual use.

  • PDF

A Study on the Evaluation of the ESS Capacity of Considering for Charge-Discharge Characteristic and CO2 Emission in Jeju (배터리 충방전특성을 고려한 제주계통의 적정 ESS용량과 탄소배출량 산정에 관한 연구)

  • Ku, Bon-Hui;Cha, Jun-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.455-460
    • /
    • 2014
  • South Korea's power consumption is increasing every year. For stable electric power supply, more generation facilities are needed. But it is not easy to build nuclear power generation facilities, so provision of renewable energy is thought of as the solution. For the system's stable management, practical use of energy storing system is needed. Currently, pumping up electric power station is considered most useful. In this study, we have calculated the least amount of energy storing device by considering the renewable energy, HVDC, and change in power for the appliance of ESS in Jeju system, according to The 6th Basic Plan for Long-term Electricity Supply and Demand. Also we have calculated the amount of the battery and about the load equalizing effect to use battery as power storing device. Finally, we have calculated the reduction of electricity generation and the reduction of $CO_2$ emission with this study.

Contributions of Large-Industrial Enterprise to Demand-Side Management and Economic Analysis on Diffusion of Energy Efficiency Measures (산업체 전력다소비 설비의 수요관리 기여도 및 효율향상 보급에 대한 경제성 평가분석)

  • Kim, Seong-Cheol;Park, Jong-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.18-26
    • /
    • 2012
  • Though electricity consumption amount in industry has been increased gradually, corresponding power supply show symptoms of marginal point. Importance of demand-side management from large-industries has also been raised. This paper deals with induction motor, which is one of representative examples of heavy electricity consumption utilities, to analyze potential technical capability, economic feasibility from consumers' viewpoint and demand-side management feasibility from nation-wide perspective. Nation-wide economic feasibility analysis was done through California test, which has been used as demand-side management evaluation model. This paper also describes limitation of existing high efficiency induction motor in terms of contribution to demand-side management and utilizes premium motor to calculate demand-side management contribution level and economic feasibility evaluation. Likewise, this paper emphasizes the efficiency improvement of induction motor and analyzes how much premium motor related technologies can contribute to demand-side management.

Short-term Water Demand Forecasting Algorithm Based on Kalman Filtering with Data Mining (데이터 마이닝과 칼만필터링에 기반한 단기 물 수요예측 알고리즘)

  • Choi, Gee-Seon;Shin, Gang-Wook;Lim, Sang-Heui;Chun, Myung-Geun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1056-1061
    • /
    • 2009
  • This paper proposes a short-term water demand forecasting algorithm based on kalman filtering with data mining for sustainable water supply and effective energy saving. The proposed algorithm utilizes a mining method of water supply data and a decision tree method with special days like Chuseok. And the parameters of MLAR (Multi Linear Auto Regression) model are estimated by Kalman filtering algorithm. Thus, we can achieve the practicality of the proposed forecasting algorithm through the good results applied to actual operation data.

Comparison of GHG Emission with Activity Data in Korean Railroad Sector (국내 철도부문의 활동도 자료에 따른 온실가스 배출량 비교 연구)

  • Lee, Jae-Young;Rhee, Young-Ho;Kim, Yong-Ki;Jung, Woo-Sung;Kim, Hee-Man
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.861-864
    • /
    • 2011
  • Since national GHG reduction target by 2020 has been presented in Korea, the role of railroad has been reinforced within transport system due to the allocation of reduction target into sector. So, it is necessary to manage activity data systematically for the calculation of GHG emission in railroad. Now, the activity data of diesel consumption for NIR(National Inventory Report) are provided from oil supply and demand statistics. On the other hands, the activity data collected directly from railroad operating companies are used for GHG & Energy Target Management Act. This study aimed to assess the GHG emissions using two kinds of activity data related to the diesel consumption of railroad in 2009 and 2010. As a result, GHG emissions based on oil supply and demand statistics was 636 thousands ton $CO_{2e}$, but the activity data collected from railroad operating companies showed 649 thousands ton $CO_{2e}$ in 2009. Also, the gap of $CO_{2e}$ emission was increased in 2010. These trends were caused because oil supply and demand statistics included total diesel sales volume during 1 year and the activity data collected from railroad operating companies were the amount of diesel consumption only at railcar operation and maintenance step. In conclusion, it is important to develop the management and verification system of activity data with high reliability to substitute oil supply and demand statistics in railroad sector.

  • PDF

Volume Estimation Method for Greenhouse Rainwater Tank (온실 빗물 저수조의 용량산정 방법)

  • Seo, Chan Joo;Koo, Ja-Kong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.2
    • /
    • pp.31-39
    • /
    • 2016
  • Due to the temporal variation of inflow/outflow, the water tank is needed. For the calculation of water tank capacity, the absolute difference between cumulative amounts of supply(e.g., rainfall) and demand(e.g.,watering) is used. No matter the (-) and (+) the absolute maximum capacity of the subtraction is calculated as the capacity. In this paper, using rainfall and watering of greenhouse facilities, it is proved that the non-linear supply or demand can be applied, and it is proved also that the greater non-linear variation case. And as the time interval for monitoring is decreased, the basin or tank volume are increased, with approximately 10 days as the critical monitoring interval for the annual natural rainfall event.