• Title/Summary/Keyword: Energy data

Search Result 11,795, Processing Time 0.038 seconds

Energy-Aware Video Coding Selection for Solar-Powered Wireless Video Sensor Networks

  • Yi, Jun Min;Noh, Dong Kun;Yoon, Ikjune
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.7
    • /
    • pp.101-108
    • /
    • 2017
  • A wireless image sensor node collecting image data for environmental monitoring or surveillance requires a large amount of energy to transmit the huge amount of video data. Even though solar energy can be used to overcome the energy constraint, since the collected energy is also limited, an efficient energy management scheme for transmitting a large amount of video data is needed. In this paper, we propose a method to reduce the number of blackout nodes and increase the amount of gathered data by selecting an appropriate video coding method according to the energy condition of the node in a solar-powered wireless video sensor network. This scheme allocates the amount of energy that can be used over time in order to seamlessly collect data regardless of night or day, and selects a high compression coding method when the allocated energy is large and a low compression coding when the quota is low. Thereby, it reduces the blackout of the relay node and increases the amount of data obtained at the sink node by allowing the data to be transmitted continuously. Also, if the energy is lower than operating normaly, the frame rate is adjusted to prevent the energy exhaustion of nodes. Simulation results show that the proposed scheme suppresses the energy exhaustion of the relay node and collects more data than other schemes.

A Change of Yearly Solar Radiation Energy Resources in Korea (국내 태양광자원의 경년변화)

  • Jo, Dok-Ki;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.81-86
    • /
    • 2010
  • Since the solar energy resource is the main input for sizing any solar photovoltaic system and solar thermal power system, it is essential to utilize the solar radiation data as a application and development of solar energy system increase. It will be necessary to understand and evaluate the insolation data. The Korea Institute of Energy Research(KIER) has begun collecting horizontal global insolation data since May, 1982 and direct normal insolation data since December 1992 at 16 different locations in Korea. Because of a poor reliability of existing data, KIER's new data will be extensively used by solar energy system users as well as by research institutes. From the results, the yearly averaged horizontal global insolation was turned out 3.60kWh/$m^2$/day and a significant difference of horizontal global insolation is observed between 1982~1990 and 1991~1999, 2000~2008 through 16 different cities in Korea.

A Construction Strategy of Spatial Data Warehouse for New & Renewable Energy (신재생에너지 공간 Data Warehouse 구축전략)

  • Kim, Kwang-Deuk;Yoon, Chang-Youl;Park, Jook-Hyuk
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.337-340
    • /
    • 2008
  • As a 'Construction of Information System on GIS based and Resource Map', establish the strategic of design about construction of Spatial Data Warehouse for New & Renewable Energy For Construction of comfortable Spatial Data Warehouse, It suggested The Construction of Spatial Data Warehouse on Block(Grid) Based with Analyze into the old Data & Method of Study. For Decide the Block(Grid) Size, We need The Study of Data & Method. Also, we expect Standardize The Process of Change & Apply with Data. make the best use of New & Renewable Energy Part

  • PDF

Energy-aware Selective Compression Scheme for Solar-powered Wireless Sensor Networks (태양 에너지 기반 무선 센서 네트워크를 위한 에너지 적응형 선택적 압축 기법)

  • Kang, Min Jae;Jeong, Semi;Noh, Dong Kun
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1495-1502
    • /
    • 2015
  • Data compression involves a trade-off between delay time and data size. Greater delay times require smaller data sizes and vice versa. There have been many studies performed in the field of wireless sensor networks on increasing network life cycle durations by reducing data size to minimize energy consumption; however, reductions in data size result in increases of delay time due to the added processing time required for data compression. Meanwhile, as energy generation occurs periodically in solar energy-based wireless sensor networks, redundant energy is often generated in amounts sufficient to run a node. In this study, this excess energy is used to reduce the delay time between nodes in a sensor network consisting of solar energy-based nodes. The energy threshold value is determined by a formula based on the residual energy and charging speed. Nodes with residual energy below the threshold transfer data compressed to reduce energy consumption, and nodes with residual energy above the threshold transfer data without compression to reduce the delay time between nodes. Simulation based performance verifications show that the technique proposed in this study exhibits optimal performance in terms of both energy and delay time compared with traditional methods.

NEUTRON INDUCED CROSS SECTION DATA FOR IR-191 AND IR-193

  • Lee, Yong-Deok;Lee, Young-Ouk
    • Nuclear Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.803-808
    • /
    • 2006
  • The neutron induced nuclear cross section data for Ir-191 and Ir-193 were calculated and evaluated from unresolved resonance energy to 20MeV. The energy-dependent optical model potential parameters were determined based on the experimental data and applied up to 20MeV. A spherical optical model, a statistical model in an equilibrium energy region, and a multistep direct and multistep compound model in a pre-equilibrium energy region were used in the calculations. The direct capture model enhanced the fast neutron capture in the pre-equilibrium energy. The theoretically calculated cross sections were compared with the experimental data and the evaluated files. The calculations were found to be in good agreement with the experiment data. The evaluated cross section results were compiled with the ENDF-6 format. The fast energy results will be merged with the resonance parts to create a full evaluation library. The improvement of the neutron-induced cross section data will contribute to an increase in the efficiency of the production of Ir-192 as a radiation source.

A Study on Energy Platform Using Data in the US: Based on Opening Platform Model

  • Song, Minzheong
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.41-50
    • /
    • 2021
  • The purpose of this study is to analyze various energy platforms using data in the US and to suggest directions and implications. Some of the leading energy platforms are selected and analyzed based on the opening platform model. We focus on the case analysis of the US utility companies. In case of the horizontal open platform, Green Button sponsor's 'Connect My Data (CMD)' driven by the government invites the utility companies to jointly develop the sponsor's data solution. In case of the vertical open platform, the certification program 'Share My Data (SMD)' allows backward compatibility, because the technical improvement is minimal. The utility companies benchmark Amazon's three-sided market mediation and prefer platform and category exclusivity. For the former, they have data analytics companies like Enervee, Opower and for the latter, they have electronics manufactures and energy service providers (ESPs) like Distributed Energy Resources (DERs). Based on this US case study, we suggest the energy platforms to open their platform for renewable energy supply, energy conservation, high-efficiency products, and residential DER dissemination. To successfully implement the government's energy transition policy, the US platforms should be benchmarked as a business model. Especially, it is needed for them to coordinate a platform ecosystem. To ensure trust in the products and services offered on the marketplace platform, platform's certification program is helpful.

TMY2 Weather data for Korea (TMY2 방식에 의한 국내 기상자료 작성 연구)

  • Shin, Kee-Shik;Yoon, Chang-Ryuel;Park, Sang-Dong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.243-246
    • /
    • 2009
  • To evaluate the building energy performance, many building simulation programs are used and its capabilities are developed. Despite of its increased capabilities the weather data used In the Building Energy performance evaluation, are still using the same limited set of data. This often forces users to find or calculate weather data such as illuminance, solar radiation, and ground temperature from other sources to calculate it. Also, proper selection of a right weather data set has been considered as one of important factors for a successful building energy simulation. In this paper, we describe TMY2 data, a generalized weather data format developed for use, and applied to Seoul region and examine the differences comparing to existing weather data. A set of 23 years raw weather data base has been developed to provide the weather data file for building energy analysis in Seoul.

  • PDF

Analyzing Smart Grid Energy Data using Hadoop Based Big Data System (하둡기반 빅데이터 시스템을 이용한 스마트그리드 전력데이터 분석)

  • Cho, YoungTak;Lee, WonJin;Lee, Ingyu;On, Byung-Won;Choi, Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.85-91
    • /
    • 2015
  • With the increasing popularity of Smart Grid infrastructure, it is much easier to collect energy usage data using AMI (Advanced Measuring Instrument) from residential housing, buildings and factories. Several researches have been done to improve an energy efficiency by analyzing the collected energy usage data. However, it is not easy to store and analyze the energy data using a traditional relational database management system since the data size grows exponentially with an increasing popularity of Smart grid infrastructure. In this paper, we are proposing a Hadoop based Big data system to store and analyze energy usage data. Based on our limited experiments, Hadoop based energy data analysis is three times faster than that of a relational database management system based approach with the current system.

A Study on the Institutionalization of Energy Efficient Operation and Maintenance Program for Existing Buildings (기존 건축물의 운영단계 에너지효율 개선을 위한 관리 및 제도화 방안 연구)

  • Cho, Jinkyun;Lee, Youngjae
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.3
    • /
    • pp.33-42
    • /
    • 2020
  • Operational energy is the energy that is used during the occupancy stage of building life cycle. It is associated with relatively longer proportion of infrastructure's service life and can constitute 80-90% of the total energy. Assessing the energy use in buildings is essential since they are significant contributors to energy demand. In this regard, energy performance of buildings has become the focus of many regulations. This paper aimed to review the regulations about the energy performance of buildings during their operational stage in Korea. For energy efficient operation program for existing buildings, governments should implement policies and support voluntary programs that rely on collecting and managing building performance data and using this data to inform public and private-sector operation and maintenance strategies. Implementing these policies and programs requires tools and processes for collecting, curating, managing, analyzing, and publishing this data. Energy assessment tool, that is a data resource management tool that enables to assess energy use across the entire portfolio of buildings, is also required.