• Title/Summary/Keyword: Energy conversion efficiency

Search Result 1,222, Processing Time 0.031 seconds

A Study of Fabrication Techniques of Thin film Photo-Electric Energy Conversion Elements (박막 광전에너지 변환소자의 개발에 관한 연구)

  • 성영권;민남기;성만영;김승배
    • 전기의세계
    • /
    • v.25 no.5
    • /
    • pp.63-69
    • /
    • 1976
  • Among various types of photo-electric energy conversion element which can transfer solar energy into electric energy through the photo voltaic effect, Si solar cells were investigated on photoelectric characteristics, improvements of its efficiency and economical evaluation for its production cost. To study the above subjects, we decided best conditions on fabricating of thin film Si solar cell by epitaxial growth and knew that the thin solar cell by epitaxial growth was more efficient than that by diffusion process. And also higher photo voltaic output was obtained as a effect of SiO as antireflection coating by several methods, i.e. vacuum evaporating techniques of electrode to decrease the contact resistance and to form best ohmic contact, and concentration techniques of sun's ray by lenz or both-sided illumination through special structure for reflection using mirrors.

  • PDF

Development Trends and Perspectives of Dye-Sensitized Solar Cells (염료감응 태양전지 개발동향 및 전망)

  • Kang , Moon-Sung;Kang , Yong-Soo
    • Journal of Powder Materials
    • /
    • v.12 no.1
    • /
    • pp.7-16
    • /
    • 2005
  • Dye-sensitized solar cells(DSSCs) have been under investigation for the past decade due to their attractive features such as high energy conversion efficiency and low production costs. The basis for energy conversion in the injection of electrons from a photoexcited stateof a dye sensitizer into the conduction band of the nanocrystalline $TiO_2$ semiconductor upon absorption of light. It is believed that the DSSC is one of the most promising technologies to solve the significant energy problems. In this article, the development trends and perspective of DSSCs were reviewed.

Fabrication of Highly Efficient Nanocrystalline Silicon Thin-Film Solar Cells Using Flexible Substrates (유연기판을 이용한 고효율 나노결정질 실리콘 박막 태양전지 제조)

  • Jang, Eunseok;Kim, Sol Ji;Lee, Ji Eun;Ahn, Seung Kyu;Park, Joo Hyung;Cho, Jun-Sik
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.103-109
    • /
    • 2014
  • Highly efficient hydrogenated nanocrystalline silicon (nc-Si:H) thin-film solar cells were prepared on flexible stainless steel substrates using plasma-enhanced chemical vapor deposition. To enhance the performance of solar cells, material properties of back reflectors, n-doped seed layers and wide bandgap nc-SiC:H window layers were optimized. The light scattering efficiency of Ag back reflectors was improved by increasing the surface roughness of the films deposited at elevated substrate temperatures. Using the n-doped seed layers with high crystallinity, the initial crystal growth of intrinsic nc-Si:H absorber layers was improved, resulting in the elimination of the defect-dense amorphous regions at the n/i interfaces. The nc-SiC:H window layers with high bandgap over 2.2 eV were deposited under high hydrogen dilution conditions. The vertical current flow of the films was enhanced by the formation of Si nanocrystallites in the amorphous SiC:H matrix. Under optimized conditions, a high conversion efficiency of 9.13% ($V_{oc}=0.52$, $J_{sc}=25.45mA/cm^2$, FF = 0.69) was achieved for the flexible nc-Si:H thin-film solar cells.

Estimation of Wave Energy Extraction Efficiency for a Compact Array System of Small Buoys (밀집 배열 부이시스템의 파랑에너지 추출 효율 추정)

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.8-13
    • /
    • 2011
  • A compact array system of small buoys is used for wave energy extraction. To evaluate the performance of this system, hydrodynamic analysis is carried out in regular waves using the higher order boundary element method. The motion response of each buoy is calculated considering hydrodynamic interactions caused by other buoys. The effect of energy extraction device is modeled as a linear damping load. The efficiencies of energy conversion are compared using the various sizes and arrangements of the array system and the damping coefficients for energy extraction. The increase in size or the packing ratio of the system gives better efficiency. However, the wave condition and the cost for the system should be considered to optimize performance from the perspective of engineering and economics. The proposed nondimensionalized damping coefficient for energy extraction is 0.1~0.5.

A Study of Economic Efficiency and Environmental Performance Due to the Conversion of the 7th and 8th Basic Plan for Long-term Power Supply and Demand (제7차 및 제8차 전력수급기본계획 전원 구성 전환에 따른 경제성 및 환경성 변화 분석 연구)

  • Cho, Sungjin;Yoon, Teayeon;Kim, Yoon Kyung
    • Environmental and Resource Economics Review
    • /
    • v.28 no.2
    • /
    • pp.201-229
    • /
    • 2019
  • This paper estimates the effects of generation mix changes in the $7^{th}$ and $8^{th}$ Basic Plan for Long-term Power Supply and Demand from two aspects: economic efficiency through electricity prices and environmental performance through $CO_2$ and air pollutants(NOx, SOx, PM) emissions. Particularly, we examined additional generation mix conversion paths that take into account the trade-off between economic efficiency and environmental performance through scenario analysis. According to our results, the conversion from the $7^{th}$ plan to the $8^{th}$ plan should increase the electricity prices in the mid- and long-term, while reducing GHG and air pollutants emissions at the same time. The alternative generation mix that combines $7^{th}$ and $8^{th}$ plans shows that there exists a path to mitigate the trade-off between economic and environmental in the long-term. It will be next to impossible to derive a optimal generation mix that simultaneously considers the core values, such as supply stability, environmental performance, economic efficiency, energy safety and energy security, when establishing the power supply and demand plan. However, by exploring the effects of various generation mix paths and suggesting near-optimal paths, people can best choose their direction after weighhing all the paths when deciding on a forward-looking generation mix in the long term.

Economic Feasibility of Conversion of the Pulverized Coal Firing Boiler using Korean Anthracite into a Circulating Fluidized Bed Boiler (국내탄용 미분탄 보일러의 순환유동층 전환에 따른 경제성 평가)

  • Lee, Jong-Min;Kim, Dong-Won;Kim, Jae-Sung;Kim, Jong-Jin;Kim, Hyeng-Seok
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.489-497
    • /
    • 2006
  • The economical efficiency of conversion of the PC (pulverized coal) firing boiler to the CFB (circulating fluidized bed) boiler which used Koran anthracite as fuel was evaluated. The economic feasibility study was also carried out with regard to maintenance of the existing PC boiler. The sensitivity of economical efficiency with variation of the electric power and coal industry and the policy of government was analyzed and compared. As a results of the evaluation, the economical efficiency of maintenance of the existing PC boiler was higher than that of conversion to the CFB boiler because of the special policy of the government for Korean anthracite. However, the conversion to the CFB boiler was more economically attractive from a point of view of effective use of energy resources and future electric power industry. Additionally, the fund support for electric power industry using Korean anthracite would be effective as changing the policy of the government.

The Evaluation of Energy Efficiency of Apartment Units after Conversion of Balconies into an Integrated Part of Interior Living Space by Computing with ECO2 Software

  • Kim, Chang-Sung
    • KIEAE Journal
    • /
    • v.16 no.2
    • /
    • pp.11-16
    • /
    • 2016
  • Purpose: International efforts to save Earth's environment against global warming and environmental pollution have been made in many countries. Energy consumption of buildings has been continuously increasing, and it has been over 40% of total energy consumption in the world. Energy consumption of buildings in Korea reaches 24% of total energy consumption. So, Korea government has executed building energy rating systems to control energy consumption of buildings. Method: This study was carried out to evaluate the energy performance of apartment unit plans according to converting balconies into living areas. For the study, six types of input models were made. Two input models(SP1 and SP 2) were the standard units that balcony areas were not converted into living areas, and four ones(EP 1, EP 2, EP 3 and EP 4) were the extended unit plans that balcony areas were turned into living areas. All of them were simulated with ECO2 software to assess building energy efficiency. Result: According to the results, the energy performance of the EP 2 and EP 4 models were 21. 8% higher than SP 1 model and 9.2% higher than SP 2 model.

The performance comparison of vapor-vapor ejector OTEC system using wet refrigerants (습냉매를 적용한 증기-증기 이젝터용 OTEC 시스템의 성능비교)

  • Yoon, Jung-In;Son, Chang-Hyo;Kim, Young-Bok;Ye, Byung Hyo;Ha, Su-Jeong;Lee, Ho-Saeng;Kim, Hyeon-Ju
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.51-56
    • /
    • 2014
  • In this paper, OTEC(Ocean Thermal Energy Conversion) system with vapor-vapor ejector is newly proposed. And 6 wet refrigerants are applied into the proposed OTEC system for performance comparison. The results of comparison performance are as follows. In the view of system efficiency, R32/R744(90:10) has the highest efficiency among the 6 refrigerants. In case of evaporation capacity, pump work and mass flow rate of working fluid, R744, R717 and R717 is lowest value, respectively. As this results, the vapor-vapor ejector is able to increase the efficiency of system. And It is necessary to select the optimized working fluid considering environmental and economic factors.

Photovoltaic Efficiencies on Dye-Sensitized Solar Cells Assembled with Graphene-Linked TiO2 Anode Films

  • Kim, A-Young;Kim, Ji-Eun;Kim, Min-Young;Ha, Seung-Won;Tien, Ngyen Thi Thuy;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3355-3360
    • /
    • 2012
  • To promote the photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs), graphene is introduced as a working electrode with $TiO_2$ in this study, because it has great transparency and very good conductivity. XRD patterns indicate the presence of graphene and $TiO_2$ particles in graphene-linked $TiO_2$ samples. Moreover, TEM pictures also show that the nano-sized $TiO_2$ particles are highly dispersed and well-linked onto the thin layered graphene. On the basis of the UV-visible spectra, the band gaps of $TiO_2$, 1.0 wt % graphene-$TiO_2$, 5.0 wt % graphene-$TiO_2$, and 10.0 wt % graphene-$TiO_2$ are 3.16, 2.94, 2.25, and 2.11 eV, respectively. Compared to pure $TiO_2$, the energy conversion efficiency was enhanced considerably by the application of graphene-linked $TiO_2$ anode films in the DSSCs to approximately 6.05% for 0.1 wt % graphene-$TiO_2$ with N719 dye (10.0 mm film thickness and $5.0mm{\times}5.0mm$ cell area) under $100mW/cm^2$ of simulated sunlight. The quantum efficiency was the highest when 1.0 wt % of graphene was used. In impedance curves, the resistance was smallest for 1.0 wt % graphene-$TiO_2$-DSSC.

Techno-economic Analysis of Power To Gas (P2G) Process for the Development of Optimum Business Model: Part 2 Methane to Electricity Production Pathway

  • Partho Sarothi Roy;Young Don Yoo;Suhyun Kim;Chan Seung Park
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.53-58
    • /
    • 2023
  • This study shows the summary of the economic performance of excess electricity conversion to hydrogen as well as methane and returned conversion to electricity using a fuel cell. The methane production process has been examined in a previous study. Here, this study focuses on the conversion of methane to electricity. As a part of this study, capital expenditure (CAPEX) is estimated under various sized plants (0.3, 3, 9, and 30 MW). The study shows a method for economic optimization of electricity generation using a fuel cell. The CAPEX and operating expenditure (OPEX) as well as the feed cost are used to calculate the discounted cash flow. Then the levelized cost of returned electricity (LCORE) is estimated from the discounted cash flow. This study found the LCORE value was ¢10.2/kWh electricity when a 9 MW electricity generating fuel cell was used. A methane production plant size of 1,500 Nm3/hr, a methane production cost of $11.47/mcf, a storage cost of $1/mcf, and a fuel cell efficiency of 54% were used as a baseline. A sensitivity analysis was performed by varying the storage cost, fuel cell efficiency, and excess electricity cost by ±20%, and fuel cell efficiency was found as the most dominating parameter in terms of the LCORE sensitivity. Therefore, for the best cost-performance, fuel cell manufacturing and efficiency need to be carefully evaluated. This study provides a general guideline for cost performance comparison with LCORE.