• 제목/요약/키워드: Energy band structure

검색결과 531건 처리시간 0.027초

X-밴드용 소형 고전력 TM01-TE11 모드 변환기에 관한 연구 (A Study on the X-band Compact High-power TM01-TE11 Mode Converter)

  • 박경순;이우상;이병무;윤영중;소준호
    • 한국전자파학회논문지
    • /
    • 제15권7호
    • /
    • pp.677-684
    • /
    • 2004
  • 본 논문에서는 X밴드용 고출력 시스템에 적합한 경사진 원형 도파관 구조를 이용한 소형 T $M_{01}$-T $E_{11}$ 모드 변환기를 제안한다. 제안된 모드 변환기는 마이크로파 에너지가 RBWO 전원으로부터 혼 안테나로 효율적으로 전송되도록 파라미터 연구를 통해 최적화된 구조로 설계되었다. 그리고 반사손실, 각 모드의 전력, 임피던스 대역폭, 그리고 모드 패턴의 시뮬레이션 결과와 측정결과를 제시하였다.다.

Hot Wall Epitaxy(HWE)법에 의한 $AgGaSe_2$ 단결정 박막 성장과 특성 (Growth and Study on Photo current of Valence Band Splitting for $AgGaSe_2$ single crystal thin film by hot wall epitaxy)

  • 박창선;홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.85-86
    • /
    • 2006
  • Single crystal $AgGaSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $AgGaSe_2$ source at $630^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=19501 eV-(879{\times}10^{-4} eV/K)T^2/(T+250 K)$.

  • PDF

LSMCD 장비를 이용 Boron 도핑 ZnO 박막제조 및 특성평가 (New Transparent Conducting B-doped ZnO Films by Liquid Source Misted Chemical Deposition Method)

  • 김길호;우성일;방정식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.307-308
    • /
    • 2008
  • Zinc oxide is a direct band gap wurtzite-type semiconductor with band gap energy of 3.37eV at room temperature. the n-type doped ZnO oxides, B doped ZnO (BZO) is widely studied in TCOs materials as it shows good electrical, optical, and luminescent properties. we focused on the fabrication of B doped ZnO films with glass substrate using the LSMCD at low temperature. And Novel boron-doped ZnO thin films were deposited and characterized from the structural, optical, electrical point of view. The structure, morphology, and optical properties of the films were studied as a function of by employing the XRD, SEM, Hall system and micro Raman system.

  • PDF

The Electronic Structure of Carbon Nanotubes with Finite Length : Tight Binding Theory

  • Moon, Won-Ha;Kim, Won-Woo;Hwang, Ho-Jung
    • Transactions on Electrical and Electronic Materials
    • /
    • 제3권1호
    • /
    • pp.23-29
    • /
    • 2002
  • The electronic properties of Carbon Nanotube(CNT) are currently the focus of considerable interest. In this paper, the electronic properties of finite length effect in CNT for the carbon nano-scale device is presented. To Calculate the electronic properties of CNT, Empirical potential method (the extended Brenner potential for C-Si-H) for carbon and Tight Binding molecular dynamic (TBMD) simulation are used. As a result of study, we have known that the value of the band gap decreases with increasing the length of the tube. The energy band gap of (6,6) armchair CNT have the ranges between 0.3 eV and 2.5 eV. Also, our results are in agreements with the result of the other computational techniques.

Substrate Temperature Effects on Structural and Optical Properties of RF Sputtered CdS Thin Films

  • 황동현;최정규;손영국
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.218.2-218.2
    • /
    • 2013
  • In this study, CdS thin films were deposited onto glass substrates by radio frequency magnetron sputtering. The films were grown at various substrate temperatures in the range of 100 to $250^{\circ}C$. The effects of substrate temperatures on the structural and optical properties were examined. The XRD analysis revealed that CdS films were polycrystalline and retained the mixed structure of hexagonal wurtzite and cubic phase. The percentages of hexagonal structured crystallites in the films were seen to be increased by increasing substrate temperatures. The film grown at $250^{\circ}C$ showed a relatively high transmittance of 80% in the visible region, with an energy band gap of 2.45 eV. The transmittance date analysis indicated that the optical band gap was closely related to the substrate temperatures.

  • PDF

흡음재 및 제진재의 최적배치를 이용한 구조-음향 연성계의 소음제어 (Sound Control of Structural-acoustic Coupling System Using Optimum Layout of Absorbing Material and Damping Material)

  • 김동영;홍도관;안찬우
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.161-168
    • /
    • 2005
  • The absorbing material is mostly used to changing the acoustic energy to the heat energy in the passive control, and that consists of the porous media. That controls an air borne noise while the stiffened plates, damping material and additional mass control a structure borne noise. The additional mass can decrease the sound by mass effect and shift of natural frequency, and damping material can decrease the sound by damping effect. The passive acoustic control using these kinds of control materials has an advantage that is possible to control the acoustic in the wide frequency band and the whole space at a price as compared with the active control using the various electronic circuit and actuator. But the space efficiency decreased and the control ability isn't up to the active control. So it is necessary to maximize the control ability in the specific frequency to raise the capacity of passive control minimizing the diminution of space efficiency such an active control. Therefore, the characteristics of control materials and the optimum layout of control materials that attached to the boundary of structure-acoustic coupled cavity were studied using sequential optimization on this study.

에너지 발생소자응용을 위한 수열합성법기반 ZnO 나노로드/Polystylene 하이브리드 나노구조 제조 (Fabrication of ZnO Nanorod/polystyrene Nanosphere Hybrid Nanostructures by Hydrothermal Method for Energy Generation Applications)

  • 백성호;박일규
    • 한국분말재료학회지
    • /
    • 제22권6호
    • /
    • pp.391-395
    • /
    • 2015
  • We report on the successful fabrication of ZnO nanorod (NR)/polystyrene (PS) nanosphere hybrid nanostructure by combining drop coating and hydrothermal methods. Especially, by adopting an atomic layer deposition method for seed layer formation, very uniform ZnO NR structure is grown on the complicated PS surfaces. By using zinc nitrate hexahydrate $[Zn(NO_3)_2{\cdot}6H_2O]$ and hexamine $[(CH_2)_6N_4]$ as sources for Zn and O in hydrothermal process, hexagonal shaped single crystal ZnO NRs are synthesized without dissolution of PS in hydrothermal solution. X-ray diffraction results show that the ZnO NRs are grown along c-axis with single crystalline structure and there is no trace of impurities or unintentionally formed intermetallic compounds. Photoluminescence spectrum measured at room temperature for the ZnO NRs on flat Si and PS show typical two emission bands, which are corresponding to the band-edge and deep level emissions in ZnO crystal. Based on these structural and optical investigations, we confirm that the ZnO NRs can be grown well even on the complicated PS surface morphology to form the chestnut-shaped hybrid nanostructures for the energy generation and storage applications.

Structural and Optical Properties of Er(III) Complex with ODA and Phen (ODA = Oxydiacetate, Phen = 1,10-Phenanthroline)

  • Kang, Jun-Gill;Kim, Tack-Jin;Park, Kwan-Soo;Kang, Sung-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권3호
    • /
    • pp.373-376
    • /
    • 2004
  • A novel Er(III) complex with oxydiacetate and 1,10-phenanthroline was synthesized and its structure and luminescence properties were characterized. The complex of $[Er(ODA){\cdot}(phen){\cdot}4H_2O]^+$ crystallizes in the monoclinic space group $P2_1$/n with a = 12.216(4) ${\AA}$, b = 16.680(2) ${\AA}$, c = 12.627(3) ${\AA}$, ${\beta}=108.30(2)^{\circ}$, V = 2442.7(11) ${\AA}^3$, Z = 4 and ${\rho}=1.841 g/cm^3$. When the complex is excited at the He-Cd 325-nm line, it produces two broad bands spanning the regions 350-650 nm and 1200-1650 nm. The emission band of the complex is characterized by a series of spectral dips in the visible emission profile. The complex exhibits sensitized near- IR emission via two kinds of energy transfers from phen to Er(III): nonradiative and radiative energy transfers.

Binary Doping of N-B and N-P into Graphene: Structural and Electronic properties

  • Kim, Hyo seok;Kim, Seong Sik
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제2회(2013년)
    • /
    • pp.256-259
    • /
    • 2013
  • We investigate co-doping effects of conjugated P-N B-N with increasing of N concentration in the graphene sheets using a first principles based on the density functional theory. N doping sites of the graphene consider two possible sites (pyridinic and porphyrin-like). Energy calculation shows that additional doping of B atom in the porphyrin-like N doped graphene ($V+B-N_x$) is hard to form. At the low chemical potential of N, one N atom with additional doping in the graphene ($V+P-N_1$, $P/B-N_1$) has low formation energy on the other hand at high chemical potential of N, high concentration of N ($V+P-N_4$, $P/B-N_3$) in the graphene is governing conformation. From the results of electronic band structure calculation, it is found that $V+P-N_4$ and $P/B-N_3$ cases change the Fermi energy therefore type change is occurred. On the other hand, the cases of $V+P-N_1$ and N+B recover the electronic structure of pristine graphene.

  • PDF

Distinct Band Gap Tunability of Zinc Oxysulfide (ZnOS) Thin Films Synthesized from Thioacetate-Capped ZnO Nanocrystals

  • Lee, Don-Sung;Jeong, Hyun-Dam
    • Applied Science and Convergence Technology
    • /
    • 제23권6호
    • /
    • pp.376-386
    • /
    • 2014
  • Zinc oxysulfide nanocrystals (ZnOS NCs) were synthesized by forming ZnS phase on a ZnO matrix. ZnO nanocrystals (NCs) with a diameter of 10 nm were synthesized by forced hydrolysis in an organic solvent. As-synthesized ZnO NCs aggregated with each other due to the high surface energy. As acetic acid (AA) was added into the milky suspension of the aggregated ZnO NCs, transparent solution of well dispersed ZnO NCs formed. Finally ZnOS NCs were formed by adding thioacetic acid (TAA) to the transparent solution. The effect of recrystallization on the structural, optical and electrical properties of the ZnOS NCs were studied. The results of UV-vis absorption confirmed the band gap tunability caused by increasing the curing temperature of ZnOS thin films. This may have originated from the larger effective size due to the recrystallization of zinc sulfide (ZnS). From XRD result we identified that ZnOS thin films have a zinc blende crystal structure of ZnS without wurtzite ZnO structure. This is probably due to the small amount of ZnO phases. These assertions were verified through EDS of FE-SEM, XPS and EDS mapping of HR-TEM results; we clearly proved that ZnOS were comprised of ZnS and ZnO phases.